scholarly journals Selenium-Enriched Yeast Relieves Hexavalent Chromium Toxicity by Inhibiting NF-κB Signaling Pathway in Broiler Spleens

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 146
Author(s):  
Yanbing Zhao ◽  
Dezheng Hao ◽  
Huan Zhang ◽  
Jingqiu Wang ◽  
Ci Liu

This study was conducted to investigate the molecular mechanisms of selenium (Se) antagonism of hexavalent chromium (Cr6+)-induced toxicity. Potassium dichromate (K2Cr2O7) and selenium-enriched yeast (SeY) were used to construct the single Cr6+ and combined Se/Cr6+ exposure broiler models, and then the broilers were randomly divided into four groups (C group, Se group, Se/Cr6+ group, and Cr6+ group). After a 42-day experiment, the spleen tissues of broilers were excised and weighted. The antagonistic mechanisms of Se and Cr6+ were evaluated using histopathological assessment, serum biochemical tests, oxidative stress kits, ELISA, qPCR, and Western blotting. On the whole, there were no significant changes between the C and Se groups. The spleen organ index in the Cr6+ group was significantly decreased, but SeY increased spleen organ index to a certain extent. The levels of SOD and GSH were reduced, and the MDA content was elevated by Cr6+; however, these changes were mitigated by Se/Cr6+ exposure. Importantly, Cr6+ exposure induced a series of histopathological injuries in broiler spleen tissues, while these symptoms were significantly relieved in the Se/Cr6+group. Furthermore, Cr6+ significantly decreased the levels of T-globulin, IgA, IgM, and IgG in serum. Contrarily, dramatically more T-globulin IgA, IgM, and IgG were found in the Se/Cr6+group than in the Cr6+ group. Revealed by the results of qPCR and WB, the expressions of NF-κB, IκBα, and p-IκBα were upregulated in Cr6+ groups, while they were downregulated in Se/Cr6+ group compared to that in Cr6+ group. Besides IFN-γ and IL-2, the expressions of pro-inflammatory cytokines were significantly increased by Cr6+ exposure, but the SeY supplement relived the expression levels mediated by Cr6+ exposure. In conclusion, our findings suggest SeY has biological activity that can protect broiler spleens from immunosuppression and inflammation induced by Cr6+, and we speculate that the NF-κB signaling pathway is one of its mechanisms.

Author(s):  
Curzytek K. ◽  
Maes M. ◽  
Kubera M.

AbstractAllergic contact dermatitis (ACD) is a T cell-mediated type of skin inflammation resulting from contact hypersensitivity (CHS) to antigens. There is strong comorbidity between ACD and major depression. Keratinocytes release immunomodulatory mediators including pro-inflammatory cytokines and chemokines, which modulate skin inflammation and are crucial cell type for the development of CHS. Our previous studies showed that fluoxetine and desipramine were effective in suppressing CHS in different mouse strains. However, the immune and molecular mechanisms underlying this effect remain to be explored. The aim of the current study was to determine the immune and molecular mechanisms of action of antidepressant drugs engaged in the inhibition of CHS response in the stimulated keratinocyte HaCaT cell line. The results show that LPS, TNF-α/IFN-γ, and DNFB stimulate HaCaT cells to produce large amounts of pro-inflammatory factors including IL-1β, IL-6, CCL2, and CXCL8. HaCaT stimulation was associated with increased expression of ICAM-1, a cell adhesion molecule, and decreased expression of E-cadherin. Imipramine, desipramine, and fluoxetine suppress the production of IL-1β, CCL2, as well as the expression of ICAM-1. LPS and TNF-α/IFN-γ activate p-38 kinase, but antidepressants do not regulate this pathway. LPS decreases E-cadherin protein expression and fluoxetine normalizes these effects. In summary, the antidepressant drugs examined in this study attenuate the stimulated secretion of pro-inflammatory cytokines, chemokines, and modulate adhesion molecule expression by the HaCaT cell line. Therefore, antidepressants may have some clinical efficacy in patients with ACD and patients with comorbid depression and contact allergy.


2019 ◽  
Author(s):  
Cong Liu ◽  
Lei Shi ◽  
Wanyun Li ◽  
Zilan Huang ◽  
Shengyu Wang ◽  
...  

Abstract Aldo-keto reductase family 1, member B10 (AKR1B10) has been reported to be involved in tumorigenesis of various cancer. In our studies, we evaluated the relationship between AKR1B10 expression and clinicopathological characteristics in colon cancer and showed that AKR1B10 expression was significantly correlated with TNM stage and clinical stage of colon cancer. It has been reported that colorectal cancer is closely associated with chronic inflammation and the underlying molecular mechanisms are still elusive. Here we found that knockdown of AKR1B10 significantly decreased the expression of the inflammatory cytokines, IL1α and IL6, induced by lipopolysaccharide (LPS) via inhibiting NF-κB signaling pathway. Furthermore, AKR1B10 depends on its reductase activity to affect the NF-κB signaling pathway and subsequently affect the production of inflammatory cytokines. In addition, knockdown of AKR1B10 effectively reduced cell proliferation and clonogenic growth, indicating the biologic role of AKR1B10 in colon cancer. Collectively, our findings provided important insights into a previously unrecognized role of AKR1B10 in colon cancer.


2021 ◽  
Vol 22 (2) ◽  
pp. 762
Author(s):  
Gi Ho Lee ◽  
Ji Yeon Kim ◽  
Sun Woo Jin ◽  
Thi Hoa Pham ◽  
Jin Song Park ◽  
...  

Inflammatory diseases are caused by excessive inflammation from pro-inflammatory mediators and cytokines produced by macrophages. The Nrf2 signaling pathway protects against inflammatory diseases by inhibiting excessive inflammation via the regulation of antioxidant enzymes, including HO-1 and NQO1. We investigated the anti-inflammatory effect of impressic acid (IPA) isolated from Acanthopanax koreanum on the lipopolysaccharide (LPS)-induced inflammation and the underlying molecular mechanisms in RAW264.7 cells. IPA attenuated the LPS-induced production of pro-inflammatory cytokines and reactive oxygen species, and the activation of the NF-κB signaling pathway. IPA also increased the protein levels of Nrf2, HO-1, and NQO1 by phosphorylating CaMKKβ, AMPK, and GSK3β. Furthermore, ML385, an Nrf2 inhibitor, reversed the inhibitory effect of IPA on LPS-induced production of pro-inflammatory cytokines in RAW264.7 cells. Therefore, IPA exerts an anti-inflammatory effect via the AMPK/GSK3β/Nrf2 signaling pathway in macrophages. Taken together, the findings suggest that IPA has preventive potential for inflammation-related diseases.


2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2794 ◽  
Author(s):  
Cao ◽  
Chen ◽  
Ren ◽  
Zhang ◽  
Tan ◽  
...  

Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.


Endocrine ◽  
2021 ◽  
Author(s):  
Francesca Coperchini ◽  
Gianluca Ricci ◽  
Laura Croce ◽  
Marco Denegri ◽  
Rubina Ruggiero ◽  
...  

Abstract Introduction Angiotensin-converting-enzyme-2 (ACE-2) was demonstrated to be the receptor for cellular entry of SARS-CoV-2. ACE-2 mRNA was identified in several human tissues and recently also in thyroid cells in vitro. Purpose Aim of the present study was to investigate the effect of pro-inflammatory cytokines on the ACE-2 mRNA levels in human thyroid cells in primary cultures. Methods Primary thyroid cell cultures were treated with IFN-γ and TNF-α alone or in combination for 24 h. ACE-2 mRNA levels were measured by RT-PCR. As a control, the levels of IFN-γ inducible chemokine (CXCL10) were measured in the respective cell culture supernatants. Results The mean levels of ACE-2 mRNA increased after treatment with IFN-γ and TNF-α in all the thyroid cell preparations, while the combination treatment did not consistently synergically increase ACE-2-mRNA. At difference, CXCL10 was consistently increased by IFN-γ and synergically further increased by the combination treatment with IFN-γ + TNF-α, with respect to IFN-γ alone. Conclusions The results of the present study show that IFN-γ and, to a lesser extent TNF-α consistently increase ACE-2 mRNA levels in NHT primary cultures. More interestingly, the combined stimulation (proven to be effective according to the synergic effect registered for CXCL10) produces different responses in terms of ACE-2 mRNA modulation. These results would suggest that elevated levels of pro-inflammatory cytokines could facilitate the entering of the virus in cells by further increasing ACE-2 expression and/or account for the different degree of severity of SARS-COV-2 infection. This hypothesis deserves to be confirmed by further specific studies.


2021 ◽  
Vol 22 (12) ◽  
pp. 6428
Author(s):  
Hanon Lee ◽  
Dong Hun Lee ◽  
Jang-Hee Oh ◽  
Jin Ho Chung

Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 131
Author(s):  
Seon Kyeong Park ◽  
Jin Yong Kang ◽  
Jong Min Kim ◽  
Hyun-Jin Kim ◽  
Ho Jin Heo

To evaluate the effects of Ecklonia cava (E. cava) on ambient-pollution-induced neurotoxicity, we used a mouse model exposed to particulate matter smaller than 2.5 µm in aerodynamic diameter (PM2.5). The intake of water extract from E. cava (WEE) effectively prevented the learning and memory decline. After a behavioral test, the toll-like receptor (TLR)-4-initiated inflammatory response was confirmed by PM2.5 exposure in the lung and brain tissues, and the WEE was regulated through the inhibition of nuclear factor-kappa B (NF-κB)/inflammasome formation signaling pathway and pro-inflammatory cytokines (IL-6 and IFN-γ). The WEE also effectively improved the PM2.5-induced oxidative damage of the lungs and brain through the inhibition of malondialdehyde (MDA) production and the activation of mitochondrial activity (mitochondrial ROS content, mitochondria membrane potential (MMP), adenosine triphosphate (ATP) content, and mitochondria-mediated apoptotic molecules). In particular, the WEE regulated the cognition-related proteins (a decreased amyloid precursor protein (APP) and p-Tau, and an increased brain-derived neurotrophic factor (BDNF)) associated with PM2.5-induced cognitive dysfunction. Additionally, the WEE prevented the inactivation of acetylcholine (ACh) synthesis and release as a neurotransmitter by regulating the acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT), and ACh receptor (AChR)-α3 in the brain tissue. The bioactive compounds of the WEE were detected as the polysaccharide (average Mw; 160.13 kDa) and phenolic compounds including 2′-phloroeckol.


Sign in / Sign up

Export Citation Format

Share Document