scholarly journals Optimal Dietary Fiber Intake to Retain a Greater Ovarian Follicle Reserve for Gilts

Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 881 ◽  
Author(s):  
Cao ◽  
Zhuo ◽  
Gong ◽  
Tang ◽  
Li ◽  
...  

: Ovarian follicle activation and survival were recently found to be controlled by nutrient sensors AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and apoptosis related markers Caspase-3, Bax, and Bcl-2, yet their expression as regulated by dietary fiber remained uncertain for gilts. To investigate the effects of dietary fiber levels on ovarian follicle development, and the cellular molecular components related to follicle activation and survival of gilts, 76 gilts with similar bodyweight and age were fed four diets, including a corn-soybean meal based control diet, or other three diets to consume 50%, 75%, and 100% more dietary fiber than the control gilts at different experimental phases. Inulin and cellulose (1:4) were added to the corn-soybean meal basal diet to increase dietary fiber content. The growth traits, and the age, bodyweight, and backfat thickness at puberty were not affected by diets. The number of primordial follicles and total follicles per cubic centimeter of ovarian tissue linearly increased with dietary fiber level at day 30 of the experiment and at the 19th day of the 3rd estrous cycle, without negatively affecting the formation of antral follicle with diameter between 1–3 mm or larger than 3 mm. These changes were associated with altered phosphorylation of mTOR, S6, Extracellular regulated protein kinases 1/2 (ERK1/2) and AMPK, and mRNA expression of Caspase-3, Bax, and Bcl-2 in ovarian tissues. Collectively, this study demonstrated a beneficial effect of dietary fiber on the ovarian follicle reserve in gilts, which provides a basis for enhancing reproduction in the short- or long-term.

Author(s):  
Mahboobeh Amoushahi ◽  
Karin Lykke-Hartmann

Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
C De Roo ◽  
S Lierman ◽  
K Tilleman ◽  
P De Sutter

Abstract STUDY QUESTION What is the role of the Hippo and PI3K/Akt pathway in follicles during ovarian tissue culture in tissue derived from oncological patients and transgender men? SUMMARY ANSWER Results highlight a Hippo pathway driven primordial follicle activation in vitro, predominantly from Day 0 to Day 4. WHAT IS KNOWN ALREADY In-vitro ovarian tissue culture aims at activating and maturing primordial follicles for fertility restoration in patients with a threatened ovarian reserve. Not all patients are eligible for ovarian cortex transplantation and therefore several groups are attempting to culture ovarian tissue in-vitro. Cortex fragmentation disrupts the Hippo pathway, leading to increased expression of downstream growth factors and follicle growth. The PI3K/Akt pathway is considered the intracellular pathway to where different extracellular factors involved in primordial follicle activation in-vivo converge. In order to optimise current ovarian tissue culture models, information on progression of these pathways during tissue culture is mandatory. STUDY DESIGN, SIZE, DURATION The first step of a multistep cortex culture system was performed using 144 ovarian cortex pieces from a total of six patients. Per patient, 24 cortical strips were cultured for 6 days and six pieces per patient were collected for downstream analysis of follicle development and Hippo and PI3K/Akt pathway targets every second day. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue was obtained from oncological (N = 3; 28.67 ± 4.51 years) and transgender (N = 3; 23.33 ± 1.53 years) patients. Follicles were analysed using haematoxylin-eosin staining and pathways were studied using immunohistochemistry and precise follicle excision by laser capture micro-dissection for RT-qPCR analysis. MIQE guidelines for RT-qPCR were pursued. Reference gene selection (GAPDH, RPL3A, 18s rRNA) was performed using GeNorm Reference Gene Selection Kit. Statistical analysis was conducted with IBM SPSS Statistics 23 (Poisson regression, negative binomial regression, ANOVA and paired t-test). MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical analysis confirmed a Hippo pathway driven primordial follicle activation due to mechanical manipulation of the cortical strips. Ovarian tissue preparation and culture induced the inhibitory phosphorylated Yes-associated protein (pYAP) to disappear in granulosa cells of primordial follicles on Day 2. The stimulatory YAP on the contrary appeared in primordial granulosa cells over increasing culture days. Looking at the YAP target connective tissue growth factor (CTGF), a significantly up-regulated CTGF was noted in primordial follicles when comparing Day 2 and Day 4 (ratio Day 2/4 = 0.082; P < 0.05), clearly showing an effect on the Hippo pathway in primordial follicles during tissue culture. Follicle classification showed a significant drop in estimated primordial follicle counts in the oncological cohort (−78%; P = 0.021) on Day 2 and in the transgender cohort on Day 4 (−634%; P = 0.008). Intermediate follicle counts showed a non-significant increasing trend to during culture and this follicle recruitment and growth resulted in a significant rise in estimated primary follicle counts on Day 6 in oncological patients (170%; P = 0.025) and, although limited in absolute numbers, a significant increase in secondary follicles on Day 4 (367%; P = 0.021) in the transgender cohort. Subsequent antral follicle development could not be observed. LIMITATIONS, REASONS FOR CAUTION A limitation is the small sample size, inherent to this study subject, especially as a large amount of tissue was needed per patient to reduce inter-patient variation in different downstream analysis techniques. A particular and specific weakness of this study is the inability to include an age-matched control group. WIDER IMPLICATIONS OF THE FINDINGS These findings support an adapted tissue preparation for Hippo pathway disruption and a shorter first phase of tissue culture. This work may also have implications for transplantation of cryopreserved tissue as larger strips (and thus slower burnout due to less Hippo pathway disruption) could be a benefit. STUDY FUNDING/COMPETING INTEREST(S) This research was financially supported by the Foundation Against Cancer (Stichting tegen Kanker, TBMT001816N), the Flemish Foundation of Scientific Research (FWO Vlaanderen, FWO G0.065.11N10) and the Gender Identity Research and Education Society (GIRES) foundation. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 537-549 ◽  
Author(s):  
Regislane P. Ribeiro ◽  
Antonia M.L.R. Portela ◽  
Anderson W.B. Silva ◽  
José J.N. Costa ◽  
José R.S. Passos ◽  
...  

SummaryThis study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml – Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rachael Jean Rodgers ◽  
Jason Anthony Abbott ◽  
Kirsty A. Walters ◽  
William Leigh Ledger

BackgroundWhilst the ability of AMH to induce the regression of the Müllerian ducts in the male fetus is well appreciated, AMH has additional biological actions in relation to steroid biosynthesis and ovarian follicle dynamics. An understanding of the physiology of AMH illuminates the potential therapeutic utility of AMH to protect the ovarian reserve during chemotherapy and in the treatment of female malignancies. The translation of the biological actions of AMH into clinical applications is an emerging focus of research, with promising preliminary results.Objective and RationaleStudies indicate AMH restrains primordial follicle development, thus administration of AMH during chemotherapy may protect the ovarian reserve by preventing the mass activation of primordial follicles. As AMH induces regression of tissues expressing the AMH receptor (AMHRII), administration of AMH may inhibit growth of malignancies expressing AMHR II. This review evaluates the biological actions of AMH in females and appraises human clinical applications.Search MethodsA comprehensive search of the Medline and EMBASE databases seeking articles related to the physiological functions and therapeutic applications of AMH was conducted in July 2021. The search was limited to studies published in English.OutcomesAMH regulates primordial follicle recruitment and moderates sex steroid production through the inhibition of transcription of enzymes in the steroid biosynthetic pathway, primarily aromatase and 17α-hydroxylase/17,20-lyase. Preliminary data indicates that administration of AMH to mice during chemotherapy conveys a degree of protection to the ovarian reserve. Administration of AMH at the time of ovarian tissue grafting has the potential to restrain uncontrolled primordial follicle growth during revascularization. Numerous studies demonstrate AMH induced regression of AMHR II expressing malignancies. As this action occurs via a different mechanism to traditional chemotherapeutic agents, AMH has the capacity to inhibit proliferation of chemo-resistant ovarian cancer cells and cancer stem cells.Wider ImplicationsTo date, AMH has not been administered to humans. Data identified in this review suggests administration of AMH would be safe and well tolerated. Administration of AMH during chemotherapy may provide a synchronistic benefit to women with an AMHR II expressing malignancy, protecting the ovarian reserve whilst the cancer is treated by dual mechanisms.


Reproduction ◽  
2020 ◽  
Author(s):  
Michael J Bertoldo ◽  
Valentina Rodriguez Paris ◽  
Debra A Gook ◽  
Melissa C Edwards ◽  
Katherine Wu ◽  
...  

Ovarian tissue cryopreservation and future transplantation is the only strategy to preserve the fertility of young female adolescent and pre-pubertal patients. The primary challenge to ovarian graft longevity is the substantial loss of primordial follicles during the period of ischemia post-transplantation. Nicotinamide mononucleotide (NMN), a precursor of the essential metabolite nicotinamide adenine dinucleotide (NAD+), is known to reduce ischemic damage. Therefore, the objective of the current study was to assess the impact of short- and long-term NMN administration on follicle number and health following ovarian tissue transplantation. Hemi-ovaries from C57Bl6 mice (n=8-12/group) were transplanted under the kidney capsule of bilaterally ovariectomised severe combined immunodeficient (SCID) mice. Recipient mice were administered either normal drinking water or water supplemented with NMN (2g/L) for either 14 or 56 days. At the end of each treatment period ovarian transplants were collected. There was no effect of NMN on the resumption of oestrous or length of oestrous cycles. Transplantation significantly reduced the total number of follicles with the greatest impact observed at the primordial follicle stage. We report that NMN did not prevent this loss. While NMN did not significantly impact the proportion of apoptotic follicles, NMN normalised PCNA expression at the primordial and intermediate stages but not at later stages. In conclusion, NMN administration did not prevent ovarian follicle loss under the conditions of this study.


2008 ◽  
Vol 20 (9) ◽  
pp. 68
Author(s):  
R. Keightley ◽  
E. McLaughlin ◽  
S. D. Roman ◽  
R. L. Robker ◽  
D. L. Russell

Oocytes are sequestered in primordial follicles before birth and remain quiescent in the ovary for decades, until recruited into the growing pool throughout the reproductive years. Therefore activation of follicle growth is a major biological checkpoint that controls female reproductive potential. However we are only just beginning to elucidate the cellular mechanisms required, for either maintenance of the quiescent primordial pool, or initiation of follicle growth. Analysis of microarray data derived from neonatal mouse ovaries indicated that members of the Suppressors of Cytokine Signalling SOCS family of proteins may play pivotal roles in folliculogenesis. We undertook a detailed analysis of gene and protein expression patterns of the eight members of the SOCS family, namely CIS and SOCS1–7, within adult and neonatal mouse ovaries. Quantitative real time PCR and immunohistochemistry was performed to determine mRNA levels and cellular localisation in the ovaries of cycling and new born animals. SOCS proteins were expressed largely within the oocytes of developing follicles and in the granulosa cells of the larger preovulatory follicles. Expression of SOCS4 in the granulosa cells and SOCS5 within the oocyte was coincident with the activation of oocyte growth and the differentiation of squamous pregranulosa to cuboidal granulosa cells. Our investigation has identified a role for the SOCS family proteins within the ovary and SOCS4 and SOCS5 as major regulators of cytokine signalling pathways in follicle activation and development.


2018 ◽  
Vol 26 (8) ◽  
pp. 1094-1104
Author(s):  
Liping Zheng ◽  
Ruichen Luo ◽  
Tie Su ◽  
Liaoliao Hu ◽  
Fengxin Gao ◽  
...  

The activation of primordial follicles is critical to ovarian follicle development, which directly influences female fertility and reproductive life span. Several studies have suggested a role for long noncoding RNAs (lncRNAs) in ovarian function. However, the precise involvement of lncRNAs in the initiation of primordial follicles is still unknown. Here, an in vitro culture model was used to investigate the roles of lncRNAs in primordial follicle activation. We found that primordial follicles in day 3 mouse ovaries were activated after culturing for 8 days in vitro, as indicated by ovarian morphology changes, increases in primary follicle number, and downregulation of mammalian Sterile 20-like kinase messenger RNA (mRNA) and upregulation of growth differentiation factor 9 mRNA. We next examined lncRNA expression profiles by RNA sequencing at the transcriptome level and found that among 60 078 lncRNAs, 6541 lncRNA were upregulated and 2135 lncRNA were downregulated in 3-day ovaries cultured for 8 days in vitro compared with ovaries from day 3 mice. We also found that 4171 mRNAs were upregulated and 1795 were downregulated in the cultured ovaries. Gene ontology and pathway analyses showed that the functions of differentially expressed lncRNA targets and mRNAs were closely linked with many processes and pathways related to ovary development, including cell proliferation and differentiation, developmental processes, and other signaling transduction pathways. Additionally, many novel identified lncRNAs showed inducible expression, suggesting that these lncRNAs may be good candidates for investigating mouse primordial follicle activation. This study provides a foundation for further exploring lncRNA-related mechanisms in the initiation of mouse primordial follicles.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Mohammad Jafari Atrabi ◽  
Parimah Alborzi ◽  
Vahid Akbarinejad ◽  
Rouhollah Fathi

Summary In vitro activation of primordial follicles could serve as a safe method to preserve fertility in patients with cancer subjected to ovarian tissue cryopreservation during oncotherapy, however the culture medium for this purpose requires to be optimized. Granulosa cell conditioned medium (GCCM) has been recognized to enhance primordial follicle activation and the present study was conducted to understand whether addition of pyruvate, a combination of insulin, transferrin and selenium (ITS) or testosterone to GCCM could improve its efficiency in this regard. To this end, 1-day-old mouse ovaries were cultured in four different media including CON (control; containing GGCM only), PYR (containing GCCM plus pyruvate), ITS (containing GCCM plus ITS) or TES (containing GCCM plus testosterone) for 11 days. Furthermore, follicular dynamics and gene expression of factors involved in follicular development were assessed using histological examination and RT-PCR, respectively, on days 5 and 11 of culture. Pyruvate decreased follicular activation, but it enhanced the progression of follicles to the primary stage. Moreover, it upregulated Bmp15 and Cx37 (P < 0.05). In the ITS group, activation of follicles was not affected and total number of follicles was reduced by day 11 of culture. Additionally, ITS downregulated Pi3k, Gdf9, Bmp15 and Cx37 (P < 0.05). Although testosterone did not affect primordial follicle activation, it enhanced the development of follicles up to the preantral stage (P < 0.05). Furthermore, testosterone inhibited the expression of Pten but stimulated the expression of Gdf9 and Cx37 (P < 0.05). In conclusion, the present study revealed that inclusion of pyruvate and testosterone into GCCM could enhance the early development of follicles in cultured 1-day-old mouse ovaries.


Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
T.J.S. Macedo ◽  
V.G. Menezes ◽  
R.S. Barberino ◽  
R.L.S. Silva ◽  
B.B. Gouveia ◽  
...  

Summary This study evaluated the effects of leptin on primordial follicle survival and activation after in vitro culture of ovine ovarian tissue and if leptin acts through the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway. Ovarian fragments were fixed for histology (fresh control) or cultured for 7 days in control medium (α-MEM+) alone or supplemented with leptin (1, 5, 10, 25 or 50 ng/ml). Follicle morphology, activation and apoptosis were analyzed. Next, the fragments were cultured in the medium that showed the best results in the absence or the presence of the PI3K inhibitor (LY294002), and immunohistostaining of p-Akt protein was assessed. After culture, the percentage of normal follicles decreased (P < 0.05) in all treatments compared with the fresh control. Moreover, control medium and 1 ng/ml leptin had similar (P > 0.05) percentages of normal follicles, which were significantly higher than those in other treatments. However, culture with 1 ng/ml leptin maintained apoptosis similarly (P > 0.05) to that of the fresh control and lower (P < 0.05) than that in α-MEM+. Leptin did not influence follicle activation (P > 0.05) compared with the control medium (α-MEM+). Culture in 1 ng/ml leptin with LY294002 decreased the normal follicles and increased apoptosis, inhibited follicle activation (P < 0.05), and reduced p-Akt immunostaining, compared with the medium containing 1 ng/ml leptin without PI3K inhibitor. In conclusion, leptin at 1 ng/ml reduces apoptosis and promotes the activation of primordial follicles compared with the fresh control after in vitro culture of ovine ovarian tissue possibly through the PI3K/Akt pathway.


1989 ◽  
Vol 69 (2) ◽  
pp. 469-475 ◽  
Author(s):  
J. D. SUMMERS ◽  
M. BEDFORD ◽  
D. SPRATT

Supplementing a 15% protein diet for chickens, with all the protein coming from canola meal, with essential amino acids (EAA) to bring diet levels up to those recommended by NRC, failed to improve weight gain over that of an unsupplemented canola meal diet. While feed:gain ratio of the EAA-supplemented diet was improved, performance was markedly inferior to that of a 20% protein corn-soybean meal diet. Supplementing the canola meal basal diet with corn oil, lysine, or lysine plus arginine resulted in significant responses; however, performance was again far below that of the corn-soybean meal positive control diet. Supplementing the canola meal basal with EAA to bring levels up to close to the corn-soybean meal control diet resulted in performance which was superior to that obtained in the experiments in which EAA were supplemented to NRC requirement levels. However, performance was still markedly inferior to the corn-soybean meal control diet. A point of interest was the failure to demonstrate a need for methionine supplementation of the canola meal diet, even though by calculations it should have been deficient in this amino acid. A marked improvement in performance occurred when the level of methionine supplementation was reduced from 0.28 to 0.1% for the canola meal diet, supplemented with lysine, arginine and tryptophan. This clearly demonstrates that excess methionine or sulphur supplementation can markedly alter the performance of canola meal diets and may be one of the major reasons why EAA supplementation of semipurified diets that contain canola meal has failed to result in marked improvements in performance. Key words: Canola meal, amino acid supplementation, chickens


Sign in / Sign up

Export Citation Format

Share Document