scholarly journals Isolation of Human Lineage, Fluoroquinolone-Resistant and Extended-β-Lactamase-Producing Escherichia coli Isolates from Companion Animals in Japan

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1463
Author(s):  
Toyotaka Sato ◽  
Shin-ichi Yokota ◽  
Tooru Tachibana ◽  
Satoshi Tamai ◽  
Shigeki Maetani ◽  
...  

An increase in human and veterinary fluoroquinolone-resistant Escherichia coli is a global concern. In this study, we isolated fluoroquinolone-resistant E. coli isolates from companion animals and characterized them using molecular epidemiological analysis, multiplex polymerase chain reaction to detect E. coli ST131 and CTX-M type extended-spectrum β-lactamases (ESBL), and multi-locus sequence typing analysis. Using plain-CHROMagar ECC, 101 E. coli isolates were isolated from 34 rectal swabs of dogs and cats. The prevalence of resistance to fluoroquinolone and cefotaxime was 27.7% and 24.8%, respectively. The prevalence of fluoroquinolone-resistant isolates (89.3%) was higher when CHROMagar ECC with CHROMagar ESBL supplement was used for E. coli isolation. The prevalence of cefotaxime resistance was also higher (76.1%) when 1 mg/L of ciprofloxacin-containing CHROMagar ECC was used for isolation. The cefotaxime-resistant isolates possessed CTX-M type β-lactamase genes (CTX-M-14, CTX-M-15, or CTX-M-27). Seventy-five percent of fluoroquinolone-resistant isolates were sequence types ST131, ST10, ST1193, ST38, or ST648, which are associated with extensive spread in human clinical settings. In addition, we isolated three common fluoroquinolone-resistant E. coli lineages (ST131 clade C1-M-27, C1-nM27 and ST2380) from dogs and their respective owners. These observations suggest that companion animals can harbor fluoroquinolone-resistant and/or ESBL-producing E. coli, in their rectums, and that transmission of these isolates to their owners can occur.

2016 ◽  
Vol 10 (01) ◽  
pp. 43-52 ◽  
Author(s):  
Rafael Vignoli ◽  
Virginia García-Fulgueiras ◽  
Nicolás F Cordeiro ◽  
Inés Bado ◽  
Verónica Seija ◽  
...  

Introduction: To characterize extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli isolates obtained from extra-intestinal samples in three Uruguayan hospitals. Methodology: Fifty-five ESBL-producing E. coli isolates were studied. Virulence genes, ESBLs, and PMQR genes were detected by polymerase chain reaction.  ESBL-producing isolates were compared by pulsed-field gel electrophoresis. Multi-locus sequence typing was also performed on 13 selected isolates. Results: Thirty-seven isolates harbored blaCTX-M-15 (67.3%), eight blaCTX-M-2 (14.6%), five blaCTX-M-14 (9.1%), three carried both blaCTX-M-2 and blaCTX-M-14, one blaCTX-M-9, and one blaCTX-M-8.  Among the CTX-M-15 producers, 92% belonged to sequence types ST131 and ST405, and carried aac(6’)Ib-cr as well. Isolates harboring blaCTX-M-2, blaCTX-M-14, blaCTX-M-9, or blaCTX-M-8 were found to be genetically unrelated. Conclusions: The successful dissemination of CTX-M-15-producing E.coli isolates seems to be linked to the spreading of high-risk clones and horizontal gene transfer. A trade-off between carrying more antibiotic resistance and less virulence-related genes could partially account for the evolutionary advantages featured by successful clones.


2005 ◽  
Vol 37 (4) ◽  
pp. 265-269 ◽  
Author(s):  
Xi-Qiang Zhu ◽  
Su-Xia Li ◽  
Hua-Jun He ◽  
Qin-Sheng Yuan

Abstract The EC-SOD cDNA was cloned by polymerase chain reaction (PCR) and inserted into the Escherichia coli expression plasmid pET-28a(+) and transformed into E. coli BL21(DE3). The corresponding protein that was overexpressed as a recombinant His6-tagged EC-SOD was present in the form of inactive inclusion bodies. This structure was first solubilized under denaturant conditions (8.0 M urea). Then, after a capture step using immobilized metal affinity chromatography (IMAC), a gradual refolding of the protein was performed on-column using a linear urea gradient from 8.0 M to 1.5 M in the presence of glutathione (GSH) and oxidized glutathione (GSSG). The mass ratio of GSH to GSSG was 4:1. The purified enzyme was active, showing that at least part of the protein was properly refolded. The protein was made concentrated by ultrafiltration, and then isolated using Sephacryl S-200 HR. There were two protein peaks in the A280 profile. Based on the results of electrophoresis, we concluded that the two fractions were formed by protein subunits of the same mass, and in the fraction where the molecular weight was higher, the dimer was formed through the disulfide bond between subunits. Activities were detected in the two fractions, but the activity of the dimer was much higher than that of the single monomer. The special activities of the two fractions were found to be 3475 U/mg protein and 510 U/mg protein, respectively.


2007 ◽  
Vol 59 (2) ◽  
pp. 508-512 ◽  
Author(s):  
B.R. Paneto ◽  
R.P. Schocken-Iturrino ◽  
C. Macedo ◽  
E. Santo ◽  
J.M. Marin

The occurrence of toxigenic Escherichia coli in raw milk cheese was surveyed in Middle Western Brazil. Fifty samples of cheese from different supermarkets were analyzed for E.coli. The isolates were serotyped and screened for the presence of verotoxigenic E. coli (VTEC) and enterotoxigenic E. coli (ETEC) by Polymerase Chain Reaction (PCR). The susceptibility to thirteen antimicrobial agents was evaluated by the disk diffusion method. E.coli were recovered from 48 (96.0%) of the samples. The serogroups identified were O125 (6.0%), O111 (4.0%), O55 (2.0%) and O119 (2.0%). Three (6.0%) and 1(2.0%) of the E.coli isolates were VTEC and ETEC, respectively. Most frequent resistance was observed to the following antimicrobials: cephalothin (60.0%), nalidixic acid (40.0%), doxycyclin (33.0%), tetracycline (31.0%) and ampicillin (29.0%).


2001 ◽  
Vol 13 (4) ◽  
pp. 308-311 ◽  
Author(s):  
Jacek Osek

A multiplex polymerase chain reaction (PCR) system was developed for identification of enterotoxigenic Escherichia coli (ETEC) strains and to differentiate them from other gram negative enteric bacteria. This test simultaneously amplifies heat-labile (LTI) and heat-stable (STI and STII) toxin sequences and the E. coli-specific universal stress protein ( uspA). The specificity of the method was validated by single PCR tests performed with the reference E. coli and non- E. coli strains and with bacteria isolated from pig feces. The multiplex PCR allowed the rapid and specific identification of enterotoxin-positive E. coli and may be used as a method for direct determination of ETEC and to differentiate them from other E. coli and gram-negative enteric isolates.


2013 ◽  
Vol 11 (3) ◽  
pp. 382-386 ◽  
Author(s):  
Richard Kibbee ◽  
Natalie Linklater ◽  
Banu Örmeci

Due to contaminant Escherichia coli DNA present in recombinant Taq polymerase reagents, it is not possible to reliably detect low levels of E. coli in samples using the quantitative polymerase chain reaction (qPCR) assay. Native Taq polymerase was successfully used in this study to detect five uidA gene copies (5 fg of genomic DNA) of the uidA gene.


Author(s):  
Tanushree Barua Gupta ◽  
Malini Shariff ◽  
Thukral Ss ◽  
S.s Thukral

  Objective: Indiscriminate use of β-lactam antibiotics has resulted in the emergence of β-lactamase enzymes. AmpC β-lactamases, in particular, confer resistance to penicillin, first-, second-, and third-generation cephalosporins as well as monobactams and are responsible for antibiotic resistance in nosocomial pathogens. Therefore, this study was undertaken to screen nosocomial Escherichia coli isolates for the presence and characterization of AmpC β-lactamases. The study also envisaged on the detection of inducible AmpC β-lactamases and extended-spectrum β-lactamases (ESBLs) in AmpC β-lactamase-producing E. coli.Methods: A total of 102 clinical isolates of E. coli, were subjected to cefoxitin screening, and screen-positive isolates were further subjected to inhibitor-based detection method, phenotypic confirmatory test, disc antagonism test, polymerase chain reaction (PCR), and isoelectric focusing (IEF).Results: In this study, 33% of E. coli were resistant to cefoxitin, of which 35% were found to be positive for AmpC β-lactamase by inhibitor-based phenotypic test. Of the AmpC-positive isolates, 83% were positive for ESBLs, whereas 25% were producing inducible AmpC β-lactamases. PCR and IEF showed CIT and EBC types of AmpC β-lactamases present in the tested isolates.Conclusion: Our study showed the presence of inducible AmpC enzymes and ESBLs in E. coli isolates and PCR identified more isolates to be AmpC producers.


2016 ◽  
Vol 14 (1) ◽  
pp. 63-68 ◽  
Author(s):  
MM Akter ◽  
S Majumder ◽  
KH MNH Nazir ◽  
M Rahman

Shiga toxin-producing Escherichia coli (STEC) are zoonotically important pathogen which causes hemorrhagic colitis, diarrhea, and hemolytic uremic syndrome in animals and humans. The present study was designed to isolate and identify the STEC from fecal samples of diarrheic cattle. A total of 35 diarrheic fecal samples were collected from Bangladesh Agricultural University (BAU) Veterinary Teaching Hospital. The samples were primarily examined for the detection of E. coli by cultural, morphological and biochemical characteristics, followed by confirmation of the isolates by Polymerase Chain Reaction (PCR) using gene specific primers. Later, the STEC were identified among the isolated E. coli through detection of Stx-1 and Stx-2 genes using duplex PCR. Out of 35 samples, 25 (71.43%) isolates were confirmed to be associated with E. coli, of which only 7 (28%) isolates were shiga toxin producers, and all of them were positive for Stx-1. However, no Stx-2 positive isolate could be detected. From this study, it may be concluded that cattle can act as a reservoir of STEC which may transmit to human or other animals.J. Bangladesh Agril. Univ. 14(1): 63-68, June 2016


2019 ◽  
Vol 70 (2) ◽  
pp. 210-218 ◽  
Author(s):  
Anu Kantele ◽  
Tinja Lääveri ◽  
Sointu Mero ◽  
Inka M K Häkkinen ◽  
Juha Kirveskari ◽  
...  

AbstractBackgroundOne-third of the 100 million travelers to the tropics annually acquire extended-spectrum β-lactamase (ESBL)–producing Enterobacteriaceae (ESBL-PE), with undefined clinical consequences.MethodsSymptoms suggesting Enterobacteriaceae infections were recorded prospectively among 430 Finnish travelers, 90 (21%) of whom acquired ESBL-PE abroad. ESBL-PE isolates underwent polymerase chain reaction–based detection of diarrheagenic Escherichia coli (DEC) pathotypes (enteroaggregative E. coli [EAEC], enteropathogenic E. coli [EPEC], enterotoxigenic E. coli [ETEC], enteroinvasive E. coli, and Shiga toxin–producing E. coli), and extraintestinal pathogenic/uropathogenic E. coli (ExPEC/UPEC). Laboratory-confirmed ESBL-PE infections were surveyed 5 years before and after travel.ResultsAmong the 90 ESBL-PE carriers, manifestations of Enterobacteriaceae infection included travelers’ diarrhea (TD) (75/90 subjects) and urinary tract infection (UTI) (3/90). The carriers had 96 ESBL-producing E. coli isolates, 51% exhibiting a molecular pathotype: 13 (14%) were DEC (10 EAEC, 2 EPEC, 1 ETEC) (12 associated with TD) and 39 (41%) ExPEC/UPEC (none associated with UTI). Of ESBL-PE, 3 (3%) were ExPEC/UPEC-EAEC hybrids (2 associated with diarrhea, none with UTI). Potential ESBL-PE infections were detected in 15 of 90 subjects (17%). The 10-year medical record survey identified 4 laboratory-confirmed ESBL-PE infections among the 430 travelers, all in subjects who screened ESBL-PE negative after returning home from their index journeys but had traveled abroad before their infection episodes.ConclusionsHalf of all travel-acquired ESBL-producing E. coli strains qualified molecularly as pathogens. Extraintestinal and uropathogenic pathotypes outnumbered enteric pathotypes (41% vs 14%), yet the latter correlated more closely with symptomatic infection (0% vs 92%). Despite more ESBL-PE strains qualifying as ExPEC/UPEC than DEC, travel-acquired ESBL-PE are more often associated with TD than UTI.


2002 ◽  
Vol 65 (1) ◽  
pp. 5-11 ◽  
Author(s):  
TAKAHISA MIYAMOTO ◽  
NATSUKO ICHIOKA ◽  
CHIE SASAKI ◽  
HIROSHI KOBAYASHI ◽  
KEN-ICHI HONJOH ◽  
...  

The DNA band patterns generated by polymerase chain reaction (PCR) using the du2 primer and template DNAs from various strains of Escherichia coli and non–E. coli bacteria were compared. Among three to five prominent bands produced, the three bands at about 1.8, 2.7, and 5.0 kb were detected in all of the E. coli O157 strains tested. Some nonpathogenic E. coli and all pathogenic E. coli except E. coli O157 showed bands at 1.8 and 5.0 kb. It seems that the band at 2.7 kb is specific to E. coli O157. Sequence analysis of the 2.7-kb PCR product revealed the presence of a DNA sequence specific to E. coli O157:H− and E. coli O157:H7. Since the DNA sequence from base 15 to base 1008 of the PCR product seems to be specific to E. coli O157, a PCR assay was carried out with various bacterial genomic DNAs and O157-FHC1 and O157-FHC2 primers that amplified the region between base 23 and base 994 of the 2.7-kb PCR product. A single band at 970 bp was clearly detected in all of the strains of E. coli O157:H− and E. coli O157:H7 tested. However, no band was amplified from template DNAs from other bacteria, including both nonpathogenic and pathogenic E. coli except E. coli O157. All raw meats inoculated with E. coli O157:H7 at 3 × 100 to 3.5 × 102 CFU/25 g were positive both for our PCR assay after cultivation in mEC-N broth at 42°C for 18 h and for the conventional cultural method.


2014 ◽  
Vol 8 (07) ◽  
pp. 818-822 ◽  
Author(s):  
Farzaneh Firoozeh ◽  
Mohammad Zibaei ◽  
Younes Soleimani-Asl

Introduction: Plasmid-mediated quinolone resistance, which complicates treatment, has been increasingly identified in Escherichia coli isolates worldwide. The purpose of this study was to identify the plasmid-mediated qnrA and qnrB genes among the quinolone-resistant Escherichia coli isolated from urinary tract infections in Iran. Methodology: A total of 140 Escherichia coli isolates were collected between March and October 2012 from urinary tract infections in Khorram Abad, Iran. All isolates were tested for quinoloe resistance using the disk diffusion method. Also, all quinolone-resistant isolates were screened for the presence of the qnrA and qnrB genes by polymerase chain reaction. Minimum inhibitory concentrations (MICs) of ciprofloxacin for the qnr-positive isolates were determined. Results: One hundred sixteen (82.8%) of 140 Escherichia coli isolates were nalidixic acid-resistant; among them, 14 (12.1%) and 9 (7.8%) were qnrA and qnrB-positive, respectively. Two quinolone-resistant isolates harbored both qnrA and qnrB. Among 63 ciprofloxacin-resistant isolates, 14 (22.2%) and 9 (14.3%) were found to carry qnrA and qnrB genes, respectively. The ciprofloxacin MIC range was 0.25–512 μg/mL for 23 qnr-positive Escherichia coli isolates, 18 of which had MICs values of 4–512 μg/mL. Conclusion: Our study shows that the frequency of plasmid-mediated quinolone resistance genes among E. coli isolates in Iran is high.


Sign in / Sign up

Export Citation Format

Share Document