scholarly journals Effect of Cooking Methods on the Antioxidant Capacity of Foods of Animal Origin Submitted to In Vitro Digestion-Fermentation

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 445
Author(s):  
Beatriz Navajas-Porras ◽  
Sergio Pérez-Burillo ◽  
Álvaro Valverde-Moya ◽  
Daniel Hinojosa-Nogueira ◽  
Silvia Pastoriza ◽  
...  

The human body is exposed to oxidative damage to cells and though it has some endogenous antioxidant systems, we still need to take antioxidants from our diet. The main dietary source of antioxidants is vegetables due to their content of different bioactive molecules. However, there are usually other components of the diet, such as foods of animal origin, that are not often linked to antioxidant capacity. Still, these foods are bound to exert some antioxidant capacity thanks to molecules released during gastrointestinal digestion and gut microbial fermentation. In this work, the antioxidant capacity of 11 foods of animal origin has been studied, submitted to different culinary techniques and to an in vitro digestion and gut microbial fermentation. Results have shown how dairy products potentially provide the highest antioxidant capacity, contributing to 60% of the daily antioxidant capacity intake. On the other hand, most of the antioxidant capacity was released during gut microbial fermentation (90–98% of the total antioxidant capacity). Finally, it was found that the antioxidant capacity of the studied foods was much higher than that reported by other authors. A possible explanation is that digestion–fermentation pretreatment allows for a higher extraction of antioxidant compounds and their transformation by the gut microbiota. Therefore, although foods of animal origin cannot be compared to vegetables in the concentration of antioxidant molecules, the processes of digestion and fermentation can provide some, giving animal origin food some qualities that could have been previously unappreciated.

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1312
Author(s):  
Beatriz Navajas-Porras ◽  
Sergio Pérez-Burillo ◽  
Álvaro Jesús Valverde-Moya ◽  
Daniel Hinojosa-Nogueira ◽  
Silvia Pastoriza ◽  
...  

The antioxidant capacity of foods is essential to complement the body’s own endogenous antioxidant systems. The main antioxidant foods in the regular diet are those of plant origin. Although every kind of food has a different antioxidant capacity, thermal processing or cooking methods also play a role. In this work, the antioxidant capacity of 42 foods of vegetable origin was evaluated after in vitro digestion and fermentation. All foods were studied both raw and after different thermal processing methods, such as boiling, grilling roasting, frying, toasting and brewing. The cooking methods had an impact on the antioxidant capacity of the digested and fermented fractions, allowing the release and transformation of antioxidant compounds. In general, the fermented fraction accounted for up to 80–98% of the total antioxidant capacity. The most antioxidant foods were cocoa and legumes, which contributed to 20% of the daily antioxidant capacity intake. Finally, it was found that the antioxidant capacity of the studied foods was much higher than those reported by other authors since digestion–fermentation pretreatment allows for a higher extraction of antioxidant compounds and their transformation by the gut microbiota.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1995
Author(s):  
Xochitl Cruz Sollano-Mendieta ◽  
Ofelia Gabriela Meza-Márquez ◽  
Guillermo Osorio-Revilla ◽  
Darío Iker Téllez-Medina

Spondias purpurea L. plum is a source of antioxidant compounds. Nevertheless, once they are consumed and go through the digestive system, these compounds may undergo changes that modify their bioaccessibility. This study aimed to evaluate the effect of in vitro gastrointestinal digestion on the total content of carotenoids (TCC), ascorbic acid (AA), phenolic compounds (TPC), flavonoids (TFC), anthocyanins (TAC), and antioxidant capacity (ABTS, DPPH) of 12 plum Spondias purpurea L. ecotypes. The plum samples were subjected to the InfoGest in vitro digestion model. TCC, AA, TPC, TFC, TAC, ABTS, and DPPH were significantly different (p ≤ 0.05) in each in vitro digestion stage. The gastric stage released the highest content of AA (64.04–78.66%) and TAC (128.45–280.50%), whereas the intestinal stage released the highest content of TCC (11.31–34.20%), TPC (68.61–95.36%), and TFC (72.76–95.57%). Carotenoids were not identified in the gastric stage whilst anthocyanins were lost at the end of the intestinal digestion. At the gastric stage, AA presented a positive and high correlation with ABTS (r: 0.83) and DPPH (r: 0.84), while, in the intestinal stage, TPC and TFC presented positive and high correlation with ABTS (r ≥ 0.8) and DPPH (r ≥ 0.8), respectively.


2016 ◽  
Vol 11 (8) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Wojciech Koch ◽  
Wirginia Kukula-Koch ◽  
Marcin Dziedzic ◽  
Kazimierz Głowniak ◽  
Yoshinori Asakawa

Zingiber officinale (Zingiberaceae) is a common spice and a medicine widely cultivated in tropical and subtropical climate around the globe, which contains both precious polyphenols and terpenes in its extracts. The ubiquity of ginger in a variety of foods encouraged the authors to assess the influence of thermal processing and digestion of the plant material on its antioxidant capacity. The obtained results of DPPH assay showed marked differences in the antioxidant potential of the processed samples, in comparison with fresh ginger rhizomes. Autoclave and microwave heating procedures were found to evoke the mildest decomposition of the antioxidants and increase the antioxidant capacity of the plant (from IC50 of 210±10 for a fresh rhizome to ca 160±16 μg/mL for the former, and to 150±18 for the latter technique), whereas frying and boiling for different durations significantly deteriorated the antiradical potential up to IC50 = 940±36 μg/mL. Mouth and stomach digestion decreased the antioxidant potential of the extracts even to ca. 1000±47 μg/mL. A protective role of saliva towards the antioxidant compounds against hydrochloric acid and pepsin activities has been proven. A marked deterioration in antioxidant capacity in digested rhizomes may shed new light on the actual absorption of consumed polyphenols with food products.


Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 114 ◽  
Author(s):  
Luminita David ◽  
Virgil Danciu ◽  
Bianca Moldovan ◽  
Adriana Filip

Red fruits are considered a major source of antioxidant compounds in the human diet. They usually contain anthocyanins, phenolic pigments that confer them multiple health-promoting properties. The health benefits of these bioactive phytocompounds are strongly related to their bioavailability, which has been reported to be low. The aim of the present study is to investigate the changes in antioxidant capacity and anthocyanin content of Cornelian cherry fruit extract during gastrointestinal digestion. Thus, the work was designed using a simulated in vitro digestion model. The antioxidant capacity (AA) was tested by the 2,2-azinobis (3-ethylbenzothiazolyne-6-sulphonic acid) radical cation (ABTS) method, while quantification of anthocyanins (TAC) was accomplished by the means of the pH differential method and high performance liquid chromatography (HPLC). The results showed that gastric digestion had no significant effect on the TAC of the extract, while the AA slightly increased. After duodenal digestion, only 28.33% of TAC and 56.74% of AA were maintained. Cornelian cherries’ anthocyanins were stable in stomach, so they can be absorbed in order to manifest their antioxidant capacity at the cellular level. The duodenal digestion dramatically decreased the TAC and AA level in the fruit extract.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1023
Author(s):  
Alice Cattivelli ◽  
Angela Conte ◽  
Serena Martini ◽  
Davide Tagliazucchi

The impact of domestic cooking (baking, boiling, frying and grilling) and in vitro digestion on the stability and release of phenolic compounds from yellow-skinned (YSO) and red-skinned onions (RSO) have been evaluated. The mass spectrometry identification pointed out flavonols as the most representative phenolic class, led by quercetin-derivatives. RSO contained almost the double amount of phenolic compounds respect to YSO (50.12 and 27.42 mg/100 g, respectively). Baking, grilling and primarily frying resulted in an increased amount of total phenolic compounds, especially quercetin-derivatives, in both the onion varieties. Some treatments promoted the degradation of quercetin-3-O-hexoside-4′-O-hexoside, the main compound present in both the onion varieties, leading to the occurrence of quercetin-4′-O-hexoside and protocatechuic acid-4-O-hexoside. After in vitro digestion, the bioaccessibility index for total phenolic compounds ranged between 42.6% and 65.5% in grilled and baked YSO, respectively, and between 39.8% and 80.2% in boiled and baked RSO, respectively. Baking contributed to the highest amount of bioaccessible phenolic compounds for both the onion varieties after in vitro digestion. An in-depth design of the cooking process may be of paramount importance in modulating the gastro-intestinal release of onion phenolic compounds.


2016 ◽  
Vol 96 (5) ◽  
pp. 657-676 ◽  
Author(s):  
Davide Tagliazucchi ◽  
Ahmed Helal ◽  
Elena Verzelloni ◽  
Angela Conte

2020 ◽  
Vol 133 ◽  
pp. 109104 ◽  
Author(s):  
Francielli P.R. de Morais ◽  
Tássia B. Pessato ◽  
Eliseu Rodrigues ◽  
Luana Peixoto Mallmann ◽  
Lilian R.B. Mariutti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document