scholarly journals In Vitro Enzymatic and Kinetic Studies, and In Silico Drug-Receptor Interactions, and Drug-Like Profiling of the 5-Styrylbenzamide Derivatives as Potential Cholinesterase and β-Secretase Inhibitors with Antioxidant Properties

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 647
Author(s):  
Malose J. Mphahlele ◽  
Emmanuel N. Agbo ◽  
Garland K. More ◽  
Samantha Gildenhuys

The 5-(styryl)anthranilamides were transformed into the corresponding 5-styryl-2-(p-tolylsulfonamido)benzamide derivatives. These 5-styrylbenzamide derivatives were evaluated through enzymatic assays in vitro for their capability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase (BACE-1) activities as well as for antioxidant potential. An in vitro cell-based antioxidant activity assay involving lipopolysaccharides (LPS)-induced reactive oxygen species (ROS) production revealed that compounds 2a and 3b have the capability of scavenging free radicals. The potential of the most active compound, 5-styrylbenzamide (2a), to bind copper (II) or zinc (II) ions has also been evaluated spectrophotometrically. Kinetic studies of the most active derivatives from each series against the AChE, BChE, and β-secretase activities have been performed. The experimental results are complemented with molecular docking studies into the active sites of these enzymes to predict the hypothetical protein–ligand binding modes. Their drug likeness properties have also been predicted.

2019 ◽  
Vol 20 (21) ◽  
pp. 5451
Author(s):  
Malose J. Mphahlele ◽  
Samantha Gildenhuys ◽  
Emmanuel N. Agbo

A series of novel 2-carbo–substituted 5-oxo-5H-furo[3,2-g]chromene-6-carbaldehydes and their 6-(4-trifluoromethyl)phenylhydrazono derivatives have been prepared and evaluated for biological activity against the human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The most active compounds from each series were, in turn, evaluated against the following enzyme targets involved in Alzheimer’s disease, β-secretase (BACE-1) and lipoxygenase-15 (LOX-15), as well as for anti-oxidant potential. Based on the in vitro results of ChE and β-secretase inhibition, the kinetic studies were conducted to determine the mode of inhibition by these compounds. 2-(4-Methoxyphenyl)-5-oxo-5H-furo[3,2-g]chromene-6-carbaldehyde (2f), which exhibited significant inhibitory effect against all these enzymes was also evaluated for activity against the human lipoxygenase-5 (LOX-5). The experimental results were complemented with molecular docking into the active sites of these enzymes. Compound 2f was also found to be cytotoxic against the breast cancer MCF-7 cell line.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2416 ◽  
Author(s):  
Abd Amr ◽  
Mohamed Abo-Ghalia ◽  
Gaber Moustafa ◽  
Mohamed Al-Omar ◽  
Eman Nossier ◽  
...  

A series of macrocyclic pyrido-pentapeptide candidates 2–6 were synthesized by using N,N-bis-[1-carboxy-2-(benzyl)]-2,6-(diaminocarbonyl)pyridine 1a,b as starting material. Structures of the newly synthesized compounds were established by IR, 1H and 13C-NMR, and MS spectral data and elemental analysis. The in-vitro cytotoxicity activity was investigated for all compounds against MCF-7 and HepG-2 cell lines and the majority of the compounds showed potent anticancer activity against the tested cell lines in comparison with the reference drugs. Out of the macrocyclic pyrido-pentapeptide based compounds, 5c showed encouraging inhibitory activity on MCF-7 and HepG-2 cell lines with IC50 values 9.41 ± 1.25 and 7.53 ± 1.33 μM, respectively. Interestingly, 5c also demonstrated multitarget profile and excellent inhibitory activity towards VEGFR-2, CDK-2 and PDGFRβ kinases. Furthermore, molecular modeling studies of the compound 5c revealed its possible binding modes into the active sites of those kinases.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S25-S26
Author(s):  
Jingjing Ma ◽  
Emma Wu ◽  
Ye Li ◽  
William Seibel ◽  
Le Shen ◽  
...  

Abstract Compromised epithelial barrier function is known to be associated with inflammatory bowel disease (IBD) and may contribute to disease development. One mechanism of barrier dysfunction is increased expression of paracellular tight junction ion and water channels formed by claudins. Claudin-2 and -15 are two such channels. We hypothesize that blocking these channels could be a viable therapeutic approach to treat diarrhea. In an effort to develop blockers of these channels, we turn to our previously developed and validated in silico models of claudin-15 (Samanta et al. 2018). We reasoned that compounds that can bind with the interior of claudin pores can limit paracellular water and ion flux. Thus, we used docking algorithms to search for putative small molecules that bind in the claudin-15 pore. AutoDock Vina was initially used to assess rigid docking using small compound databases. The small molecules were analyzed based on binding affinity to the pore and visualized using VMD for their potential blockage of the channel. Clusters of binding modes were identified based on the prominent interacting residues of the protein with the small molecules. We initially screened 10,500 compounds from within the UIC Centre for Drug Discovery and a cross-section of 10,000 compounds from the NCI open compound repository. This initial screen allowed us to identify 2 first-in-class selective claudin-15 blockers with efficacy in MDCK monolayers induced to express claudin-15 and in wildtype duodenum. Next, we screened the entire NCI open compound repository for additional molecules structurally related to our best initially identified molecule and this has allowed us to identify 13 additional molecules that increase TER of claudin-15 expressing MDCK monolayers by 90–160%. Additionally, these molecules possess similar structural components that will be collected in a fragment library and explored through molecular dynamics simulations. We also developed a claudin-2 homology model on which we are performing docking studies and in vitro measurements, which we expect will result in similar candidate ligands for blocking claudin-2. Our study will provide important insight into the role of claudin-dependent cation permeability in fundamental physiology, which we believe will lead to the utility of claudin blockers as a novel and much needed approach to treat diseases such as IBD.


Author(s):  
Nadia Ali Ahmed Elkanzi ◽  
Hajer Hrichi ◽  
Rania B. Bakr

Background: The 1,4-naphthoquinone ring has attracted prominent interest in the field of medicinal chemistry due to its potent pharmacological activity as antioxidant, antibacterial, antifungal, and anticancer. Objective: Herein, a series of new Schiff bases (4-6) and chalcones (8a-c & 9a-d) bearing 1,4-naphthoquinone moiety were synthesized in good yields and were subjected to in-vitro antimicrobial, antioxidant, and molecular docking testing. Methods: A facile protocol has been described in this study for the synthesis of new derivatives (4-7, 8a-c, and 9a-d) bearing 1,4-naphthoquinone moiety. The chemical structures of all the synthesized compounds were identified by 1H-NMR, 13C-NMR, MS, and elemental analyses. Moreover, these derivatives were assessed for their in-vitro antimicrobial activity against gram-positive, gram-negative bacteria, and fungal strains. Further studies were conducted to test their antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay. Molecular docking studies were realized to identify the most likely interactions of the novel compounds within the protein receptor. Results: The antimicrobial results showed that most of the compounds displayed good efficacy against both bacterial and fungal strains. The antioxidant study revealed that compounds 9d, 9a, 9b, 8c, and 6 exhibited the highest radical scavenging activity. Docking studies of the most active antimicrobial compounds within GLN- 6-P, recorded good scores with several binding interactions with the active sites. Conclusion: Based on the obtained results, it was found that compounds 8b, 9b, and 9c displayed the highest activity against both bacterial and fungal strains. The obtained findings from the DPPH radical scavenging method revealed that compounds 9d and 9a exhibited the strongest scavenging potential. The molecular docking studies proved that the most active antimicrobial compounds 8b, 9b and 9c displayed the highest energy binding scores within the glucosamine-6-phosphate synthase (GlcN-6-P) active site.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1789 ◽  
Author(s):  
Julia Krzywik ◽  
Witold Mozga ◽  
Maral Aminpour ◽  
Jan Janczak ◽  
Ewa Maj ◽  
...  

Colchicine is a well-known compound with strong antiproliferative activity that has had limited use in chemotherapy because of its toxicity. In order to create more potent anticancer agents, a series of novel colchicine derivatives have been obtained by simultaneous modification at C7 (amides and sulfonamides) and at C10 (methylamino group) positions and characterized by spectroscopic methods. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX and BALB/3T3 cell lines. Additionally, the activity of the studied compounds was investigated using computational methods involving molecular docking of the colchicine derivatives to β-tubulin. The majority of the obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin or cisplatin against tested cancer cell lines. Furthermore, molecular modeling studies of the obtained compounds revealed their possible binding modes into the colchicine binding site of tubulin.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1307 ◽  
Author(s):  
Eliška Kohelová ◽  
Rozálie Peřinová ◽  
Negar Maafi ◽  
Jan Korábečný ◽  
Daniela Hulcová ◽  
...  

Twelve derivatives 1a–1m of the β-crinane-type alkaloid haemanthamine were developed. All the semisynthetic derivatives were studied for their inhibitory potential against both acetylcholinesterase and butyrylcholinesterase. In addition, glycogen synthase kinase 3β (GSK-3β) inhibition potency was evaluated in the active derivatives. In order to reveal the availability of the drugs to the CNS, we elucidated the potential of selected derivatives to penetrate through the blood-brain barrier (BBB). Two compounds, namely 11-O-(2-methylbenzoyl)-haemanthamine (1j) and 11-O-(4-nitrobenzoyl)-haemanthamine (1m), revealed the most intriguing profile, both being acetylcholinesterase (hAChE) inhibitors on a micromolar scale, with GSK-3β inhibition properties, and predicted permeation through the BBB. In vitro data were further corroborated by detailed inspection of the compounds’ plausible binding modes in the active sites of hAChE and hBuChE, which led us to provide the structural determinants responsible for the activity towards these enzymes.


2020 ◽  
Vol 32 (5) ◽  
pp. 1151-1157 ◽  
Author(s):  
P. Raghurama Shetty ◽  
G. Shivaraja ◽  
G. Krishnaswamy ◽  
K. Pruthviraj ◽  
Vivek Chandra Mohan ◽  
...  

In this work, some 2-phenyl quinoline-4-carboxamide derivatives (5a-j) were synthesized via base catalyzed Pfitzinger reaction of isatin and acetophenone followed by C-N coupling reaction using POCl3 and assessed them for their in vitro antimicrobial and anticancer activity. The structure of newly synthesized compound were established by FT-IR, 1H & 13C NMR and Mass spectrometric analysis. The synthesized carboxamides were subjected to preliminary in vitro antibacterial activity as well as for antifungal activity. Results of antibacterial activity were compared with standard antibacterial (ciprofloxocin) and antifungal (fluconozole). Among the tested compounds, 5d, 5f and 5h exhibited promising activity with zone of inhibition ranging from 10 to 25 mm. Further, the anticancer activity determined using MTT assay against two cancer cell lines. Compounds 5b, 5d, 5f and 5h showed good anticancer activity among all the other derivatives. In order to correlate the in vitro results, in silico ADME and Molecular docking studies were carried out for (5a-j). ADME properties results showed that all the compounds obey rule of Five rule except 5a, 5e and 5g compound. Molecular docking studies of the synthesized compounds showed good binding affinity through hydrogen bond interactions with key residues on active sites as well as neighboring residues within the active site of chosen target proteins viz. antibacterial, antifungal and anticancer. Comparison of both results of in silico as well as in vitro investigation suggests that the synthesized compounds may act as potential antimicrobial as well as anticancer agents.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Urmeela Taukoorah ◽  
M. Fawzi Mahomoodally

Aloe veragel (AVG) is traditionally used in the management of diabetes, obesity, and infectious diseases. The present study aimed to investigate the inhibitory potential of AVG againstα-amylase,α-glucosidase, and pancreatic lipase activityin vitro. Enzyme kinetic studies using Michaelis-Menten (Km) and Lineweaver-Burk equations were used to establish the type of inhibition. The antioxidant capacity of AVG was evaluated for its ferric reducing power, 2-diphenyl-2-picrylhydrazyl hydrate scavenging ability, nitric oxide scavenging power, and xanthine oxidase inhibitory activity. The glucose entrapment ability, antimicrobial activity, and total phenolic, flavonoid, tannin, and anthocyanin content were also determined. AVG showed a significantly higher percentage inhibition (85.56±0.91) of pancreatic lipase compared to Orlistat. AVG was found to increase the Michaelis-Menten constant and decreased the maximal velocity (Vmax) of lipase, indicating mixed inhibition. AVG considerably inhibits glucose movement across dialysis tubes and was comparable to Arabic gum. AVG was ineffective against the tested microorganisms. Total phenolic and flavonoid contents were66.06±1.14 (GAE)/mg and60.95±0.97 (RE)/mg, respectively. AVG also showed interesting antioxidant properties. The biological activity observed in this study tends to validate some of the traditional claims of AVG as a functional food.


2021 ◽  
Vol 19 (1) ◽  
pp. 1-13
Author(s):  
L.A. Adeniran ◽  
C.P. Palanisamy ◽  
A.O.T. Ashafa

Determination of the in vitro antioxidant and the inhibitory potential of flavonoids from Hermannia geniculata (FHG) roots on diabetes-linked enzymes was carried out. The chemical profiling of FHG roots extract was investigated using High Pressure Thin Layer Chromatography (HPTLC) fingerprint analysis. The reactive oxygen scavenging potential of the extract was analyzed. Starch solution (1%) was reacted with different concentrations of FHG extract to determine the α-amylase inhibitory potential of the extract while α- glucosidase inhibition assay was carried out through incubation of different concentrations of the extract followed by addition of p-ntrophenyl-α-Dglucopyranoside solution. HPTLC results indicated the presence of flavonoids/ phenolcarboxylic acid, and Kaemferol (Rf 0.80) were detected in the extract with retention factor Rf. ranging from 0.08 to 0.95. FHG extract showed commendable antioxidant properties with IC50 values (3.07± 0.12, 2.13± 0.67) µg/mL for 1, 1-diphenyl-2- picrylhydrazyl (DPPH) and 2, 2-azino-bis (3- ethylbenzothiazoline-6-sulphonic) acid (ABTS) radicals which were lower and significantly different (p<0.05) compared to standard silymarin with IC50: (3.55± 0.10, 2.77± 0.75) µg/mL for DPPH and ABTS respectively. The results indicated mild inhibition of α-amylase with IC50: (5.55± 0.37) µg/mL which was higher and significantly different (p<0.05) from acarbose with IC50: (3.81± 0.29) µg/mL. Moreover, the extract showed 73% inhibition of α-glucosidase. Kinetic studies of FHG extract revealed competitive and mixed non-competitive inhibition of α- amylase and α-glucosidase respectively. This study indicated FHG capabilities of scavenging reactive oxygen species and reducing hydrolysis of starch responsible for post-prandial hyperglyceamia seen in type 2 diabetes mellitus. Keywords: Antidiabetic, Antioxidant, Flavonoids, Hermannia geniculate, HPTLC


2021 ◽  
Author(s):  
Sina B. Kirchhofer ◽  
Victor Jun Yu Lim ◽  
Julia G. Ruland ◽  
Peter Kolb ◽  
Moritz Bünemann

AbstractThe µ opioid receptor (MOR) is the key target for analgesia, but the application of opioids is accompanied by several issues. There is a wide range of opioid analgesics, differing in their chemical structure and their properties in receptor activation and subsequent effects. A better understanding of ligand-receptor interactions and resulting effects is important. Here, we calculated the respective binding modes for several opioids and analyzed fingerprints of ligand-receptor interactions. We further corroborated the binding modes experimentally by cellular assays. As ligand-induced modulation of activity due to changes in membrane potential was displayed by MOR, we further analyzed the effects of voltage sensitivity of this receptor. With a combined in silico and in vitro approach, we defined discriminating interaction patterns for the ligand-specific voltage sensitivity. With this, we present new insights for interactions likely in ligand recognition and their specific effects on activation of the MOR.


Sign in / Sign up

Export Citation Format

Share Document