scholarly journals Insights into the Phytochemical and Multifunctional Biological Profile of Spices from the Genus Piper

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1642
Author(s):  
Simon Vlad Luca ◽  
Katarzyna Gaweł-Bęben ◽  
Marcelina Strzępek-Gomółka ◽  
Karolina Czech ◽  
Adriana Trifan ◽  
...  

Piper spices represent an inexhaustible reservoir of bioactive compounds that may act as drug leads in natural product research. The aim of this study was to investigate a series of methanolic fruit extracts obtained from P. nigrum (black, green, white and red), P. longum and P. retrofractum in comparative phytochemical and multi-directional biological (antimicrobial, antioxidant, anti-enzymatic and anti-melanogenic) assays. The metabolite profiling revealed the presence of 17 piperamides, with a total content of 247.75–591.42 mg piperine equivalents/g. Among the 22 tested microorganism strains, Piper spices were significantly active (MIC < 0.1 mg/mL) against the anaerobes Actinomyces israelii and Fusobacterium nucleatum. The antioxidant and anti-enzymatic activities were evidenced in DPPH (10.64–82.44 mg TE/g) and ABTS (14.20–77.60 mg TE/g) radical scavenging, CUPRAC (39.94–140.52 mg TE/g), FRAP (16.05–77.00 mg TE/g), chelating (0–34.80 mg EDTAE/g), anti-acetylcholinesterase (0–2.27 mg GALAE/g), anti-butyrylcholinesterase (0.60–3.11 mg GALAE/g), anti-amylase (0.62–1.11 mmol ACAE/g) and anti-glucosidase (0–1.22 mmol ACAE/g) assays. Several Piper extracts (10 μg/mL) inhibited both melanin synthesis (to 32.05–60.65% of αMSH+ cells) and release (38.06–45.78% of αMSH+ cells) in αMSH-stimulated B16F10 cells, partly explained by their tyrosinase inhibitory properties. Our study uncovers differences between Piper spices and sheds light on their potential use as nutraceuticals or cosmeceuticals for the management of different diseases linked to bacterial infections, Alzheimer’s dementia, type 2 diabetes mellitus or hyperpigmentation.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 601.2-602
Author(s):  
J. Avouac ◽  
M. Elhai ◽  
M. Forien ◽  
J. Sellam ◽  
F. Eymard ◽  
...  

Background:Type-2 diabetes and rheumatoid arthritis (RA) are two chronic diseases characterized by tissue inflammation and insulin resistance. To date, no data have evaluated the influence of RA-induced joint and systemic inflammation on the course of type-2 diabetes.Objectives:To study the impact of RA on type-2 diabetesMethods:Observational, multicenter, cross-sectional usual-care study, including 7 rheumatology centers. This study included over a 24-month period consecutive patients with type-2 diabetes and RA, fulfilling the 2010 ACR / EULAR criteria, and diabetic controls with osteoarthritis (OA). The following data were collected: demographics, disease activity and severity indices, current treatment for RA and diabetes, history and complications of diabetes. A systematic blood test was performed, assessing inflammatory (CRP levels) and metabolic (fasting glycemia and insulin levels, HbA1c) parameters. The HOMA2%B (insulin secretion) and HOMA2%S (tissue insulin sensitivity) indices (HOMA calculator, © Diabetes Trials Unit, University of Oxford) were used to assess insulin resistance. Ra and OA patients were compared using parametric tests after adjusting for age and BMI. A multivariate logistic regression was performed ti identify factors independently associated with insulin resistance.Results:We included 122 RA patients (74% women, mean age 64+/-11 years, mean disease duration 15+/-11 11 years, 75% with positive ACPA antibodies and 64% with erosive disease) and 54 controls with OA. 64% of RA patients were treated with oral corticosteroids <10 mg/day, 65% received methotrexate and 53% received targeted biological therapies.The characteristics of type-2 diabetes in the 54 OA patients corresponded to severe insulin-resistant diabetes: age> 65 years, high BMI> 30 kg/m2, mean HbA1c 7.3%+/-11 1.3%, 30% of insulin requirement, high frequency of other cardiovascular risk factors, macroangiopathy found in almost half of patients and biological criteria of insulin resistance (elevation of HOMA2%B and decrease of HOMA2%S).RA patients with type-2 diabetes had a younger age (64+/-11 years vs. 68+/-12 years, p=0.031) and lower BMI (27.7+/-11 5.5 vs. 31.5+/-11 6.3, p<0.001). These patients also had severe diabetes (HbA1c 7.0%+/-11 1.2%, 29% of insulin requirement, 43% of macroangiopathy) with an insulin resistance profile identical to OA controls. After adjusting for age and BMI, RA patients had a significantly increased insulin secretion compared to OA patients (HOMA2%B: 83.1+/-11 65.2 vs. 49.3+/-11 25.7, p=0.023) as well as a significant reduction of insulin sensitivity (HOMA2%S: 61.1+/-11 31.6 vs. 92.9+/-11 68.1, p=0.016). This insulin resistance was associated with the inflammatory activity of RA, with a negative correlation between the HOMA2%S and the DAS28 (r=-0.28, p=0.027). The multivariate logistic regression confirmed the independent association between the HOMA2%S index and DAS28 (OR: 3.93, 95% CI 1.02-15.06), as well as high blood pressure (OR: 1.29, 95% CI 0.33-1.99 CI).Conclusion:RA patients with type-2 diabetes displayed severe, poorly controlled diabetes, highlighting the burden of comorbidities associated with RA. The clinical-biological profile of diabetic RA patients was severe insulin-resistant diabetes, with a biological profile of insulin resistance linked to the inflammatory activity of the disease. These findings may have therapeutic implications, with the potential targeting of insulin resistance through the treatment of joint and systemic inflammation.Acknowledgments:Société Française de Rhumatologie (research grant)Bristol Myers Squibb (research grant)Disclosure of Interests:Jérôme Avouac Grant/research support from: Pfizer, Bristol Myers Squibb, Consultant of: Sanofi, Bristol Myers Squibb, Abbvie, Boerhinger, Nordic Pharma, Speakers bureau: Sanofi, Bristol Myers Squibb Abbvie, MSD, Pfizer, Nordic Pharma, Muriel ELHAI: None declared, Marine Forien: None declared, Jérémie SELLAM: None declared, Florent Eymard Consultant of: Regenlab, Anna Moltó Grant/research support from: Pfizer, UCB, Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, UCB, Laure Gossec Grant/research support from: Lilly, Mylan, Pfizer, Sandoz, Consultant of: AbbVie, Amgen, Biogen, Celgene, Janssen, Lilly, Novartis, Pfizer, Sandoz, Sanofi-Aventis, UCB, Frédéric Banal: None declared, Joel Daminano: None declared, Philippe Dieudé: None declared, Yannick Allanore Shareholder of: Sanofi, Roche, Consultant of: Actelion, Bayer, BMS, Boehringer Ingelheim, Inventiva, Sanofi


2016 ◽  
Vol 60 (9) ◽  
pp. 5111-5121 ◽  
Author(s):  
Emma Hennessy ◽  
Claire Adams ◽  
F. Jerry Reen ◽  
Fergal O'Gara

ABSTRACTStatins are members of a class of pharmaceutical widely used to reduce high levels of serum cholesterol. In addition, statins have so-called “pleiotropic effects,” which include inflammation reduction, immunomodulation, and antimicrobial effects. An increasing number of studies are emerging which detail the attenuation of bacterial growth andin vitroandin vivovirulence by statin treatment. In this review, we describe the current information available concerning the effects of statins on bacterial infections and provide insight regarding the potential use of these compounds as antimicrobial therapeutic agents.


2017 ◽  
Vol 35 (3) ◽  
pp. 185-190 ◽  
Author(s):  
C. Daniel De Magalhaes Filho ◽  
Michael Downes ◽  
Ronald M. Evans

Obesity and its associated diseases, including type 2 diabetes, have reached epidemic levels worldwide. However, available treatment options are limited and ineffective in managing the disease. There is therefore an urgent need for the development of new pharmacological solutions. The bile acid (BA) Farnesoid X receptor (FXR) has recently emerged as an attractive candidate. Initially described for their role in lipid and vitamin absorption from diet, BAs are hormones with powerful effects on whole body lipid and glucose metabolism. In this review, we focus on FXR and how 2 decades of work on this receptor, both in rodents and humans, have led to the development of drug agonists with potential use in humans for treatment of conditions ranging from obesity-associated diseases to BA dysregulation.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Magdalena Woźniak ◽  
Lucyna Mrówczyńska ◽  
Anna Sip ◽  
Marta Babicka ◽  
Tomasz Rogoziński ◽  
...  

Introduction. Honey, propolis and pollen belong to bee products that have beneficial biological properties. These products exhibit e.g. antibacterial, antifungal and antioxidant properties. Due to biological activity and natural origin, bee products are used, e.g. in the food industry, cosmetology and pharmacy. Aim. The aim of the study was to compare the antioxidant and antibacterial activity of honey, propolis and pollen from an apiary located in Wielkopolska Province. Material and methods. Honey, propolis and pollen used in this study came from the same apiary located in Wielkopolska Province. The antioxidant potential of bee products was evaluated applying DPPH· free radical scavenging activity assay. The antimicrobial activity of the tested bee products was determined by the point-diffusion method against 13 strains of pathogenic and potentially pathogenic bacteria. In addition, the total content of phenolic compounds in honey, propolis and pollen was determined by the colorimetric method. Results. Propolis exhibited higher antioxidant activity, in comparison to honey and pollen. The antiradical activity of propolis was equal to 80% approx. activity of Trolox, the standard antioxidant. Among tested bee products, propolis was characterized by the highest total phenols content. In addition, honey, propolis and pollen showed antagonistic activity against tested bacterial strains. Conclusions. The obtained results indicate that among the tested bee products of native origin, i.e. honey, propolis and pollen, propolis characterized by the highest antioxidant activity and the total content of phenolic compounds. In addition, all bee products showed bactericidal activity against the tested bacterial strains.


2021 ◽  
Vol 22 (18) ◽  
pp. 9862
Author(s):  
Xudan Xu ◽  
Tian Ye ◽  
Wenping Zhang ◽  
Tian Zhou ◽  
Xiaofan Zhou ◽  
...  

Quorum sensing (QS) is a microbial cell–cell communication mechanism and plays an important role in bacterial infections. QS-mediated bacterial infections can be blocked through quorum quenching (QQ), which hampers signal accumulation, recognition, and communication. The pathogenicity of numerous bacteria, including Xanthomonas campestris pv. campestris (Xcc), is regulated by diffusible signal factor (DSF), a well-known fatty acid signaling molecule of QS. Cupriavidus pinatubonensis HN-2 could substantially attenuate the infection of XCC through QQ by degrading DSF. The QQ mechanism in strain HN-2, on the other hand, is yet to be known. To understand the molecular mechanism of QQ in strain HN-2, we used whole-genome sequencing and comparative genomics studies. We discovered that the fadT gene encodes acyl-CoA dehydrogenase as a novel QQ enzyme. The results of site-directed mutagenesis demonstrated the requirement of fadT gene for DSF degradation in strain HN-2. Purified FadT exhibited high enzymatic activity and outstanding stability over a broad pH and temperature range with maximal activity at pH 7.0 and 35 °C. No cofactors were required for FadT enzyme activity. The enzyme showed a strong ability to degrade DSF. Furthermore, the expression of fadT in Xcc results in a significant reduction in the pathogenicity in host plants, such as Chinese cabbage, radish, and pakchoi. Taken together, our results identified a novel DSF-degrading enzyme, FadT, in C. pinatubonensis HN-2, which suggests its potential use in the biological control of DSF-mediated pathogens.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 147
Author(s):  
Laima Česonienė ◽  
Paulina Štreimikytė ◽  
Mindaugas Liaudanskas ◽  
Vaidotas Žvikas ◽  
Pranas Viškelis ◽  
...  

Berries of Actinidia kolomikta (A. kolomikta) are known for high ascorbic acid content, but the diversity of phenolic compounds has been little studied. The present research aimed to investigate phenolic compounds and antioxidant activity in berries and leaves of twelve A. kolomikta cultivars. The UHPLC-ESI-MS/MS technique was used to determine differences among cultivars in the quantitative composition of individual phenolic compounds. Antioxidant activity was determined by DPPH• free radical scavenging and CUPRAC methods. In the present study, 13 phenolic compounds were detected in berries, whereas leaves contained 17 phenolic compounds. Flavonols were the primary class found in both berries and leaves; other identified phenolic compounds were flavan-3-ols, flavones and, phenolic acids; and dihydrochalcone phloridzin was identified in the leaves. The amount and variety of phenolic compounds in berries and leaves and antioxidant activity were found to be cultivar-dependent. The highest total content of phenolic compounds was found in the leaves of the cultivar ‘Aromatnaja’ and in the berries of the cultivar ‘VIR-2’. Results of this study have confirmed that berries and leaves of A. kolomikta could be a valuable raw material for both food and pharmaceutical industries.


2017 ◽  
Vol 13 (36) ◽  
pp. 218 ◽  
Author(s):  
Ibrahim A. ◽  
Babandi A. ◽  
Tijjani A.A. ◽  
Murtala Y. ◽  
Yakasai H.M. ◽  
...  

Some medicinal plants and their purified derivatives have demonstrated beneficial therapeutic potentials for many centuries. They have been reported to exhibit antioxidant activity, reducing the oxidative stress in cells and are therefore useful in the treatment of many human diseases, including diabetes and other non-communicable diseases. This study evaluated antioxidative activity and enzymatic (alpha-amylase and alphaglucosidase) inhibitory potentials of Gymnema sylvestre methanolic leaf extract (GSMLE) using standard methods. Phytochemical screening revealed the presence of alkaloids, tannins, saponins, steroids, terpenoids and flavonoids. The total phenolics and total flavonoids content in the extract were found to be 6.629±0.745 (µg/ml of catechol equivalent) and 0.004±0.0012 (µg/ml of quercetin equivalent) respectively. GSMLE was shown to have radical scavenging activity against DPPH (290.54 ± 39.72 %), hydroxyl radical (86.507 ± 23.55 %) and hydrogen peroxide (45.25 ± 25.23 %). The level of SOD was significantly decreased in H2O2 induced and H2O2+extract induced when compared with normal control (p<0.05); the level of GSH was significantly increased in H2O2 induced control and significantly decreased in H2O2+extract induced test when compared to normal control. GSH was also decreased significantly in H2O2+extract induced when compared to H2O2 induced control (p<0.05). The extract also demonstrated significant inhibition of alpha-glucosidase (IC50 182.26 ±1.05μg/ml) when compared with standard acarbose (IC50 189.52±0.46) and was more potent than the arcarbose on alpha-amylase inhibition with IC50 of 195.3±4.40 and 200.05±7.16 respectively. These findings may therefore, stress the potentiality of using Gymnema sylvestre as a natural remedy for the management of type 2 diabetes.


2013 ◽  
Vol 8 (3) ◽  
pp. 217-219 ◽  
Author(s):  
Astrid Steinbrecher ◽  
Tobias Pischon

2019 ◽  
Vol 20 (2) ◽  
pp. 348 ◽  
Author(s):  
Olena Moshynets ◽  
Jean-François Bardeau ◽  
Oksana Tarasyuk ◽  
Stanislav Makhno ◽  
Tetiana Cherniavska ◽  
...  

The choice of efficient antimicrobial additives for polyamide resins is very difficult because of their high processing temperatures of up to 300 °C. In this study, a new, thermally stable polymeric biocide, polyhexamethylene guanidine 2-naphtalenesulfonate (PHMG-NS), was synthesised. According to thermogravimetric analysis, PHMG-NS has a thermal degradation point of 357 °C, confirming its potential use in joint melt processing with polyamide resins. Polyamide 11 (PA-11) films containing 5, 7 and 10 wt% of PHMG-NS were prepared by compression molding and subsequently characterised by FTIR spectroscopy. The surface properties were evaluated both by contact angle, and contactless induction. The incorporation of 10 wt% of PHMG-NS into PA-11 films was found to increase the positive surface charge density by almost two orders of magnitude. PA-11/PHMG-NS composites were found to have a thermal decomposition point at about 400 °C. Mechanical testing showed no change of the tensile strength of polyamide films containing PHMG-NS up to 7 wt%. Antibiofilm activity against the opportunistic bacteria Staphylococcus aureus and Escherichia coli was demonstrated for films containing 7 or 10 wt% of PHMG-NS, through a local biocide effect possibly based on an influence on the bacterial eDNA. The biocide hardly leached from the PA-11 matrix into water, at a rate of less than 1% from its total content for 21 days.


2012 ◽  
Vol 7 (7) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Eliana Solórzano ◽  
Nancy Vera ◽  
Soledad Cuello ◽  
Roxana Ordoñez ◽  
Catiana Zampini ◽  
...  

The aim of this study was to assess the chemical and biological profile of propolis samples collected in arid environments of north-western Argentina. The samples were from two phytogeographical regions (Prepuna and Monte de Catamarca Province). Propolis ethanolic extracts (PEE) and chloroform (CHL), hexane (HEX) and aqueous (AQ) sub-extracts of samples from three regions (CAT-I; CAT-II and CAT-III) were obtained. All PEE exhibited antioxidant activity in the DPPH radical scavenging assay (SC50 values between 28 and 43 μg DW/mL). The CHL extract was the most active (SC50 values between 10 and 37 μg DW/mL). The antioxidant activity in the β-carotene bleaching assays was more effective for PEE and CHL (IC50 values between 2 and 9 μg DW/mL, respectively). A similar pattern was observed for antibacterial activity. The highest inhibitory effect on the growth of human Gram-positive bacteria was observed for CHL-III and CHL-I (Monte region) with minimal inhibitory concentration values (MIC100) of 50 to 100 μg DW/mL. Nine compounds were identified by HPLC-PAD. Two of them (2′,4′-dihydroxychalcone and 2′,4′- dihydroxy 3′-methoxychalcone) were found only in propolis samples from the Monte phytogeographical region. We consider that the Argentine arid region is appropriate to place hives in order to obtain propolis of excellent quality because the dominant life forms in that environment are shrubby species that produce resinous exudates with a high content of chalcones, flavones and flavonols.


Sign in / Sign up

Export Citation Format

Share Document