scholarly journals Phenolic Composition of Hydrophilic Extract of Manna from Sicilian Fraxinus angustifolia Vahl and its Reducing, Antioxidant and Anti-Inflammatory Activity in Vitro

Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 494 ◽  
Author(s):  
Alessandro Attanzio ◽  
Antonella D’Anneo ◽  
Francesco Pappalardo ◽  
Francesco Paolo Bonina ◽  
Maria Antonia Livrea ◽  
...  

Manna, a very singular vegetable product derived from the spontaneous solidification of the sap of some Fraxinus species, has long been known for its mild laxative and emollient properties. In this work, a hydro-alcoholic extract of manna (HME) from Sicilian Fraxinus angustifolia Vahl was investigated using HPLC-DAD to find phenol components and using chemical and biological in vitro assays to determine its reducing, antioxidant and anti-inflammatory capacity. We identified elenolic acid, tyrosol, hydroxytyrosol, catechin, fraxetin, verbascoside, gallic acid, procyanidin-B1, and luteolin 3,7 glucoside, in order of abundance. Measurements of total antioxidant activity by Folin-Ciocalteu reaction and ferric reducing ability (FRAP), as well as of scavenger activity towards ABTS•+, DPPH•, and perferryl-myoglobin radicals, showed that the phytocomplex effectively reduced oxidants with different standard potentials. When compared with vitamin E, HME also behaved as an efficient chain-breaking antioxidant against lipoperoxyl radicals from methyl linoleate. In cellular models for oxidative stress, HME counteracted membrane lipid oxidation of human erythrocytes stimulated by tert-butyl hydroperoxide and prevented the generation of reactive oxygen species, as well as the GSH decay in IL-1β–activated intestinal normal-like cells. Moreover, in this in vitro intestinal bowel disease model, HME reduced the release of the pro-inflammatory cytokines IL-6 and IL-8. These findings may suggest that manna acts as an antioxidant and anti-inflammatory natural product in humans, beyond its well-known effects against constipation.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3303
Author(s):  
Amina M. G. Zedan ◽  
Mohamed I. Sakran ◽  
Omar Bahattab ◽  
Yousef M. Hawsawi ◽  
Osama Al-Amer ◽  
...  

The use of insects as a feasible and useful natural product resource is a novel and promising option in alternative medicine. Several components from insects and their larvae have been found to inhibit molecular pathways in different stages of cancer. This study aimed to analyze the effect of aqueous and alcoholic extracts of Vespa orientalis larvae on breast cancer MCF7 cells and investigate the underlying mechanisms. Our results showed that individual treatment with 5% aqueous or alcoholic larval extract inhibited MCF7 proliferation but had no cytotoxic effect on normal Vero cells. The anticancer effect was mediated through (1) induction of apoptosis, as indicated by increased expression of apoptotic genes (Bax, caspase3, and p53) and decreased expression of the anti-apoptotic gene Bcl2; (2) suppression of intracellular reactive oxygen species; (3) elevation of antioxidant enzymes (CAT, SOD, and GPx) and upregulation of the antioxidant regulator Nrf2 and its downstream target HO-1; (4) inhibition of migration as revealed by in vitro wound healing assay and downregulation of the migration-related gene MMP9 and upregulation of the anti-migratory gene TIMP1; and (5) downregulation of inflammation-related genes (NFκB and IL8). The aqueous extract exhibited the best anticancer effect with higher antioxidant activities but lower anti-inflammatory properties than the alcoholic extract. HPLC analysis revealed the presence of several flavonoids and phenolic compounds with highest concentrations for resveratrol and naringenin in aqueous extract and rosmarinic acid in alcoholic extract. This is the first report to explain the intracellular pathway by which flavonoids and phenolic compounds-rich extracts of Vespa orientalis larvae could induce MCF7 cell viability loss through the initiation of apoptosis, activation of antioxidants, and inhibition of migration and inflammation. Therefore, these extracts could be used as adjuvants for anticancer drugs and as antioxidant and anti-inflammatory agents.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


Author(s):  
Pehlivanović Belma ◽  
Čaklovica Kenan ◽  
Lagumdžija Dina ◽  
Omerović Naida ◽  
Žiga Smajić Nermina ◽  
...  

The pursuance of novel antimicrobial and anti-inflammatory agents has been expanding due to a significant need for more efficient pharmacotherapy of various infections and chronic diseases. During the last decade, pharmacokinetics, pharmacodynamics and pharmacological properties of curcumin have been extensively studied. The aim of the present study was to evaluate the antibacterial activity of curcumin against both Gram-positive and Gram-negative bacteria as well as its antifungal activity by using in vitro agar well diffusion assay. Moreover, the anti-inflammatory activity of curcumin was determined with in vitro assay of inhibition of protein denaturation. Results demonstrated wide antimicrobial activity of curcumin upon all of the test bacteria and fungi. The strongest activity of curcumin was observed at a concentration of 0.50 mg/ml against S. aureus, L. monocytogenes, E. coli, P. aeruginosa and C. albicans, resulting in a maximum zone of inhibition of 14.7 mm, 14.3 mm, 13.7 mm, 10.7 mm and 10.7 mm, respectively. Findings suggested that the antimicrobial activity of curcuminis dependent upon the concentrations. Furthermore, results demonstrated high effectiveness of curcumin compared to standard acetylsalicylic acid in inhibiting heat-induced protein denaturation, which activity is also depended upon the concentrations. The present study emphasises the potential application of curcumin as a natural antimicrobial and anti-inflammatory agent. However, findings of this study are restricted to in vitro assays and consideration should be given to conducting a study involving wider dose range test substances as well as including further research on in vivo models.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3910 ◽  
Author(s):  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
You Chul Chung ◽  
Sungchan Jang ◽  
Chang-Gu Hyun ◽  
...  

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


2015 ◽  
Vol 18 (4) ◽  
pp. 713 ◽  
Author(s):  
Jody K Takemoto ◽  
Connie M. Remsberg ◽  
Neal M. Davies

Purpose: Delineate the selected pharmacodynamics of a naturally occurring stilbene 3’-Hydroxypterostilbene. Objective: Characterize for the first time the pharmacodynamics bioactivity in several in-vitro assays with relevant roles in heart disease, inflammation, cancer, and diabetes etiology and pathophysiology. Methods: 3’-Hydroxypterostilbene was studied in in-vitro assays to identify possible bioactivity. Results: 3’-Hydroxypterostilbene demonstrated anti-oxidant, anti-inflammatory, cytotoxic, anti-adipogenic, histone deacetylase, and sirtuin-1 inhibitory activity. Conclusions: The importance of understanding individual stilbene pharmacologic activities were delineated.  Small changes in chemical structure of stilbene compounds result in significant pharmacodynamic differences. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2020 ◽  
Vol 21 (7) ◽  
pp. 2591
Author(s):  
Pablo Silva ◽  
Maria de Almeida ◽  
Jamire Silva ◽  
Sonaly Albino ◽  
Renan Espírito-Santo ◽  
...  

The compound (E)-2-cyano-3-(1H-indol-3-yl)-N-phenylacrylamide (ICMD-01) was designed and developed based on the structures of clinically relevant drugs indomethacin and paracetamol through the molecular hybridization strategy. This derivative was obtained by an amidation reaction between substituted anilines and ethyl 2-cyanoacetate followed by a Knoevenagel-type condensation reaction with indole aldehyde that resulted in both a viable synthesis and satisfactory yield. In order to assess the immunomodulatory and anti-inflammatory activity, in vitro assays were performed in J774 macrophages, and significant inhibitions (p < 0.05) of the production of nitrite and the production of cytokines (IL-1β and TNFα) in noncytotoxic concentrations were observed. The anti-inflammatory effect was also studied via CFA-induced paw edema in vivo tests and zymosan-induced peritonitis. In the paw edema assay, ICMD01 (50 mg kg−1) showed satisfactory activity, as did the group treated with dexamethasone, reducing edema in 2–6 h. In addition, there was no significant inhibition of PGE2, IL-1β or TNFα in vivo. Moreover, in the peritonitis assay that assesses leukocyte migration, ICMD-01 exhibited promising results. Therefore, these preliminary studies demonstrate this compound to be a strong candidate for an anti-inflammatory drug together with an improved gastrointestinal safety profile when compared to the conventional anti-inflammatory drugs.


2019 ◽  
Vol 20 (18) ◽  
pp. 4512 ◽  
Author(s):  
Alberto Jorge Oliveira Lopes ◽  
Cleydlenne Costa Vasconcelos ◽  
Francisco Assis Nascimento Pereira ◽  
Rosa Helena Moraes Silva ◽  
Pedro Felipe dos Santos Queiroz ◽  
...  

The stingless bee, Melipona fasciculata Smith (Apidae, Meliponini), is a native species from Brazil. Their products have high biotechnological potential, however there are no studies about the biological activities of pollen collected by M. fasciculata. In this context, the present study investigated the chemical composition, anti-oxidant, anti-inflammatory, and analgesic activities of hydroethanolic pollen extracts collected by M. fasciculata in three cities in Maranhão State, Brazil. We verified the antioxidant activity of the extracts and inhibitory activity against the cyclooxygenase enzyme using in vitro assays and in allowed to select the extract with higher efficiency to be used on in vivo assays. In these trials, the selected extract showed high anti-inflammatory activity as well as nociceptive effects at central and peripheral level, suggesting that this extract acts on inhibition of histamine release and decreased synthesis of prostaglandins and the in-silico study suggested that polyphenols and acids fatty acids in the extract may be associated with these activities. The results of the present study report the high biological potential of pollen extract and we conclude that the pollen collected by M. fasciculata can be considered as the object of research for new pharmacological alternatives.


Author(s):  
HITESH MALHOTRA ◽  
MANJUSHA CHOUDHARY

Objective: The objective of the study was to establish the anti-inflammatory and anti-arthritic potential of various fractions of Eclipta prostrata Linn. Methods: The four fractions, i.e., n-butanol, ethyl acetate, chloroform, and n-hexane from hydro-alcoholic extract were obtained. First, the fractions were evaluated through in vitro models, and then they were evaluated by in vivo anti-inflammatory model, i.e., carrageenan-induced paw edema model. Further, two active fractions were evaluated for the anti-arthritic activity using formaldehyde induced arthritis model. Results: The fractions at a dose of 100 and 200 mg/kg showed an anti-inflammatory activity, but the ethyl acetate and chloroform fraction will show maximum anti-inflammatory potential. Hence, they are further evaluated for anti-arthritic potential where they show significant activity. Conclusion: From the results, it is concluded that the ethyl acetate and chloroform fraction show significant anti-arthritic activity.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Beatriz Cristina Konopatzki Hirota ◽  
Cristiane da Silva Paula ◽  
Vinícius Bednarczuk de Oliveira ◽  
Joice Maria da Cunha ◽  
Anne Karoline Schreiber ◽  
...  

The tea of aerial parts of Smilax larvata Griseb. (Smilacaceae) has been ethnopharmacologically used in Southern Brazil due to its anti-inflammatory action. In this study, ethanolic and organic extracts from aerial parts of S. larvata were phytochemically and pharmacologically characterized. The phytochemical analysis of EtOAc extract of S. larvata revealed the presence of three flavonoids, drabanemoroside, kaempferol 3-O-α-L-rhamnopyranosyl(1→2)-α-L-rhamnopyranoside, and kaempferol, the first two being isolated for the first time in this genus, two phenolic compounds p-hydroxybenzoic acid and p-coumaric acid, and alkaloids. In vitro assays demonstrated a potential antioxidant property of SLG. The treatment with SLG induced a significant reduction of the formalin-evoked flinches in rats, an effect reversed by opioid antagonist naloxone. Treatment with SLG also induced a significant increase in the hot plate latency and a decrease of intestinal motility by 45%. No effect was observed over nociceptive responses induced by a TRPA1 agonist mustard oil or over acetic acid-induced writhing in mice. Together, our data suggested that SLG has an in vivo antinociceptive effect, which seems to be associated with the opioid system activation. These findings support previous claims of medical use of Smilax larvata in the treatment of pain conditions.


2016 ◽  
Author(s):  
Mansour Sobeh ◽  
Esraa A ElHawary ◽  
Herbenya Peixoto ◽  
Rola M Labib ◽  
Heba Handoussa ◽  
...  

Background: Schotia brachypetala Sond. (Fabaceae) is an endemic tree of Southern Africa whose phytochemistry and pharmacology were slightly studied.The present work aimed at profiling the major phenolics compounds present in the hydro-alcoholic extract from S. brachypetala leaves (SBE) using LC/HRESI/MS/MS and NMR and prove their antioxidant capabilities using novel methods. Methods: In vitro assays; DPPH, TEAC persulfate decolorizing kinetic and FRAP assays, and in vivo assays: Caenorhabditis elegans strains maintenance, Intracellular ROS in C. elegans, Survival assay, GFP expression and Subcellular DAF-16 localization were employed to evaluate the antioxidant activity. Results: More than forty polyphenols ,including flavonoid glycosides, galloylated flavonoid glycosides, isoflavones, dihydrochalcones, procyanidins, anthocyanins, hydroxybenzoic acid derivatives, hydrolysable tannins, and traces of methylated and acetylated flavonoid derivatives were identified. Three compounds were isolated and identified from the genus Schotia for the first time, namely gallic acid, myricetin-3-O-α-L-1C4-rhamnoside and quercetin-3-O-L-1C4-rhamnoside.The tested extract was able to protect the worms against juglone induced oxidative stress and attenuate the reactive oxygen species (ROS) accumulation. SBE was also able to attenuate the levels of heat shock protein (HSP) expression. Discussion: A pronounced antioxidant activity in vivo, which can be attributed to its ability to promote the nuclear translocation of DAF-16/FOXO, the main transcription factor regulating the expression of stress response genes. The remarkable antioxidant activity in vitro and in vivo correlates to SBE rich phenolic profile.


Sign in / Sign up

Export Citation Format

Share Document