scholarly journals Astaxanthin Protects Retinal Photoreceptor Cells against High Glucose-Induced Oxidative Stress by Induction of Antioxidant Enzymes via the PI3K/Akt/Nrf2 Pathway

Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 729 ◽  
Author(s):  
Tso-Ting Lai ◽  
Chung-May Yang ◽  
Chang-Hao Yang

Diabetic retinopathy (DR) is a major microvascular complication that can lead to severe visual impairment in patients with diabetes. The elevated oxidative stress and increased reactive oxygen species (ROS) production induced by hyperglycemia have been reported to play an important role in the complex pathogenesis of DR. Astaxanthin (AST), a natural carotenoid derivative, has been recently recognized as a strong free radical scavenger and might, therefore, be beneficial in different diseases, including DR. In this study, we evaluated the potential role of AST as an antioxidative and antiapoptotic agent in protecting retinal cells and also investigated the involvement of the PI3K/Akt/Nrf2 pathway in AST-mediated effects. We treated high glucose-cultured mouse photoreceptor cells (661W) with different concentrations of AST and analyzed ROS production and cell apoptosis in the different regimens. Moreover, we also analyzed the expression of PI3K, Akt, Nrf2, and Phase II enzymes after AST treatment. Our results showed that AST dose-dependently reduced ROS production and attenuated 661W cell apoptosis in a high glucose environment. Importantly, its protective effect was abolished by treatment with PI3K or Nrf2 inhibitors, indicating the involvement of the PI3K/Akt/Nrf2 pathway. These results suggest AST as a nutritional supplement that could benefit patients with DR.

2021 ◽  
Author(s):  
Huogen Liu ◽  
Ling Gu ◽  
Yundi Shi ◽  
Hailin Shu ◽  
Fengming Huang ◽  
...  

Abstract Background This study aimed to investigate the diagnostic function of CD36 in type 2 diabetic (T2DM) sepsis complications (T2DSC) and its effect on β-cell differentiation. Methods First, Age - and sex-matched T2DM patients, T2DSC patients and healthy people (50 cases each) were included. Quantitative polymerase chain reaction was used to measure CD36, FOXO1, PDX1, MAFA, insulin, SOX9, Neurog3 and NANOG expression in blood samples. Second, cultured human β-cell line EndoC-βH1 and the interference and overexpression of CD36. Cell clone, apoptosis, inflammatory cytokine, oxidative stress and β-cell differentiation related proteins were also analysed. Third, examined the role of CD36 in high glucose, LPS-induced β-cell. Results CD36 mRNA, and endocrine progenitor β-cell biomarkers SOX9, Neurog3 and NANOG were significantly increased in T2DM than control group, whereas the β-cell maturation biomarkers FOXO1, PDX1, MAFA and insulin were significantly decreased. Compared with the T2DM group, CD36 and FOXO1 were significantly increased in T2DSC, but PDX1, insulin, MAFA, SOX9, Neurog3 and NANOG were significantly decreased. The receiver operating characteristic curve revealed that CD36 was useful for distinguishing T2MD and T2DSC from the control group. Furthermore, CD36 overexpression increased β-cell apoptosis and the secretion of IL-1β, IL-8 TNF-α, malondialdehyde and reactive oxygen species. CD36 induced cell defferentiation. Lastly, CD36 knockdown could inhibit the high glucose and LPS-induced cell apoptosis, inflammatory, oxidative stress and cell defferentiation. Conclusion Significant increase in CD36 can be used as a biomarker for T2MD and T2DSC. CD36 promotes T2MD or T2DSC development by inducing β-cell inflammatory and oxidative stress and defferentiation.


Author(s):  
Bargale Sushant Sukumar ◽  
Tripathy T B ◽  
Shashirekha H K ◽  
Suhas Kumar Shetty

In Ayurveda, certain herbal formulas are considered to be Rasayana and they are typically taken over periods of time to regenerate both brain and body tissue. Ashwagandha (Withania Somnifera) is used as an adaptogen, antioxidant, immune modulator, free radical scavenger, anti stress, anti arthritic, antispasmodic, anti inflammatory, nervous tonic, nerve soothing and anticancer agent. Ashwagandha (WS) as a nutritional supplement is yet too established. Maximum oxygen uptake (VO2 max) is a gold standard of cardiopulmonary and muscle cell fitness is considered.  The study evaluated the efficacy of Ashwagandha to improve cardiorespiratory endurance (VO2 max) in healthy subjects. They randomized single blind controlled comparative clinical study. 54 health volunteers in each group, study group received Ashwagandha Choorna 12gm with milk (200ml) empty stomach in the morning and the control group only milk (200ml). Maximal capacity of oxygen intake in ml/kg/min (VO2 max) with Rockport fitness walking test of both study and control group were measured before intervention (0th day), after the intervention (60th day) and follow up (90th day). A significant improvement in the VO2 max (F=20.675, P <0.0001) and Hemoglobin (X2=74.150 P <0.0001) in the study group was found. Supplementation of Ashwagandha (Withania Somnifera) with milk improve hemoglobin and VO2 max (maximum aerobic capacity).


2021 ◽  
Vol 21 ◽  
Author(s):  
Zhen Zhao ◽  
Yu Lu ◽  
Huan Wang ◽  
Xiang Gu ◽  
Luting Zhu ◽  
...  

Background: Some studies demonstrated that under high-glucose (HG) condition, osteoblasts develop oxidative stress, which will impair their normal functions. The effects of activin receptor-like kinase 7 (ALK7) silencing on HG-induced osteoblasts remained unclear. Objective: The aim of this study was to explore the effect of ALK7 on HG-induced osteoblasts. Methods: MC3T3-E1 cells were treated with different concentrations of HG (0, 50, 100, 200 and 300mg/dL), and the cell viability was detected using cell counting kit-8 (CCK-8). HG-treated MC3T3-E1 cells were transfected with siALK7 or ALK7 overexpression plasmid or siNrf2, and then the viability and apoptosis were detected by CCK-8 and flow cytometry. The levels of reactive oxygen species (ROS), collagen I and calcification nodule were determined by oxidative stress kits, Enzyme-linked immunosorbent assay and Alizarin red staining. The expressions of NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and osteoblast-associated genes were determined by quantitative real-time PCR (qRT-PCR) and Western blot. Results: Cell viability was reduced with HG treatment. Silencing ALK7 inhibited the effect of HG on increasing cell apoptosis and ROS production, reduced cell viability, mineralized nodules, and downregulated collagen I and osteoblast-associated genes expression in MC3T3-E1 cells. ALK7 silencing activated the Nrf2/HO-1 signaling pathway by affecting expressions of HO-1 and Nrf2. ALK7 overexpression had the opposite effects. In addition, siNrf2 partially reversed the effects of ALK7 silencing on HG-induced MC3T3-E1 cells. Conclusion: ALK7 silencing protected osteoblasts under HG condition possibly through activating the Nrf2/HO-1 pathway.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 943 ◽  
Author(s):  
Helene Ismail ◽  
Zaynab Shakkour ◽  
Maha Tabet ◽  
Samar Abdelhady ◽  
Abir Kobaisi ◽  
...  

Traumatic brain injury (TBI) is a major health concern worldwide and is classified based on severity into mild, moderate, and severe. The mechanical injury in TBI leads to a metabolic and ionic imbalance, which eventually leads to excessive production of reactive oxygen species (ROS) and a state of oxidative stress. To date, no drug has been approved by the food and drug administration (FDA) for the treatment of TBI. Nevertheless, it is thought that targeting the pathology mechanisms would alleviate the consequences of TBI. For that purpose, antioxidants have been considered as treatment options in TBI and were shown to have a neuroprotective effect. In this review, we will discuss oxidative stress in TBI, the history of antioxidant utilization in the treatment of TBI, and we will focus on two novel antioxidants, mitoquinone (MitoQ) and edaravone. MitoQ can cross the blood brain barrier and cellular membranes to accumulate in the mitochondria and is thought to activate the Nrf2/ARE pathway leading to an increase in the expression of antioxidant enzymes. Edaravone is a free radical scavenger that leads to the mitigation of damage resulting from oxidative stress with a possible association to the activation of the Nrf2/ARE pathway as well.


Author(s):  
Shubhangi H. Pawar ◽  
Vishal S. Gulecha ◽  
Manoj S. Mahajan ◽  
Aman B Upaganiawar ◽  
Chandrashekhar D. Upasani

Oxidative stress is strongly linked to neurodegeneration and oxidative species can modify many amino acids and proteins in the brain. Cysteine amino acid is most susceptible to oxidative post-translational modifications (PTMs). Reversible or irreversible cysteine PTMs can cause dyshomeostasis, which further continued to cellular damage. Many cysteine dependent proteins and many non-proteins using cysteine as their structural components are affected by oxidative stress. Several cysteine dependent enzymes are acting as antioxidants. Cysteine is a major contributor to glutathione (GSH) and superoxide dismutase (SOD) synthesis. Cysteine precursor N-acetylcysteine (NAC) supplementation is proven as a potent free radical scavenger and increase brain antioxidants and subsequently potentiates the natural antioxidant cellular defense mechanism. Thus, in this chapter, the authors explore the linkage of cellular cysteine networks and neurodegenerative disorders.


2017 ◽  
Vol 44 (3) ◽  
pp. 1174-1187 ◽  
Author(s):  
Artur Rozentsvit ◽  
Kevin Vinokur ◽  
Sherin Samuel ◽  
Ying Li ◽  
A. Martin Gerdes ◽  
...  

Background/Aims: Elevated production of reactive oxygen species (ROS) is linked to endothelial dysfunction and is one of the key contributors to the pathogenesis of diabetic vascular complications. Emerging evidence has indicated that ellagic acid (EA), a polyphenol found in fruits and nuts, possesses numerous biological activities including radical scavenging. However, whether EA exerts a vasculo-protective effect via antioxidant mechanisms in blood vessels exposed to diabetic conditions remains unknown. Accordingly, the goal of this current study was to determine whether EA decreases vascular ROS production and thus ameliorates endothelial dysfunction in the diabetic milieu. Methods: Intact rat aortas and human aortic endothelial cells (HAEC) were stimulated with 30mM high glucose (HG) with and without EA co-treatment. Endothelium-dependent vasodilation was measured using a wire myograph. Gene and protein expression of non-phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 4 (NOX4) were detected using RT-PCR and western blotting, respectively. Oxidative stress was determined by measuring ROS levels using dihydroethidium (DHE) staining. Results: Intact aortas exposed to HG condition displayed exacerbated ROS production and impairment of endothelium-dependent vasodilation, characterizing endothelial dysfunction. These effects were markedly reduced with EA treatment. HG enhanced ROS production in HAEC, paralleled by increased ERK1/2 activation and NOX4 expression. EA treatment blunted the increase of ROS generation, ERK1/2 activation and decreased NOX4. Conclusions: EA significantly decreases endothelial ROS levels and ameliorates the impairment of vascular relaxation induced by HG. Our results suggest that EA exerts a vasculo-protective effect under diabetic conditions via an antioxidant effect that involves inhibition of ERK1/2 and downregulation of NOX4.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kazuyuki Miyamoto ◽  
Hirokazu Ohtaki ◽  
Kenji Dohi ◽  
Tomomi Tsumuraya ◽  
Dandan Song ◽  
...  

Traumatic brain injury (TBI) is a major cause of death and disability in young people. No effective therapy is available to ameliorate its damaging effects. Our aim was to investigate the optimal therapeutic time window of edaravone, a free radical scavenger which is currently used in Japan. We also determined the temporal profile of reactive oxygen species (ROS) production, oxidative stress, and neuronal death. Male C57Bl/6 mice were subjected to a controlled cortical impact (CCI). Edaravone (3.0 mg/kg), or vehicle, was administered intravenously at 0, 3, or 6 hours following CCI. The production of superoxide radicals (O2∙-) as a marker of ROS, of nitrotyrosine (NT) as an indicator of oxidative stress, and neuronal death were measured for 24 hours following CCI. Superoxide radical production was clearly evident 3 hours after CCI, with oxidative stress and neuronal cell death becoming apparent after 6 hours. Edaravone administration after CCI resulted in a significant reduction in the injury volume and oxidative stress, particularly at the 3-hour time point. Moreover, the greatest decrease inO2∙-levels was observed when edaravone was administered 3 hours following CCI. These findings suggest that edaravone could prove clinically useful to ameliorate the devastating effects of TBI.


Sign in / Sign up

Export Citation Format

Share Document