scholarly journals Phototherapy as a Rational Antioxidant Treatment Modality in COVID-19 Management; New Concept and Strategic Approach: Critical Review

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 875
Author(s):  
Reem Hanna ◽  
Snehal Dalvi ◽  
Tudor Sălăgean ◽  
Ioana Roxana Bordea ◽  
Stefano Benedicenti

The COVID-19 pandemic has taken the entire globe by storm. The pathogenesis of this virus has shown a cytokine storm release, which contributes to critical or severe multi-organ failure. Currently the ultimate treatment is palliative; however, many modalities have been introduced with effective or minimal outcomes. Meanwhile, enormous efforts are ongoing to produce safe vaccines and therapies. Phototherapy has a wide range of clinical applications against various maladies. This necessitates the exploration of the role of phototherapy, if any, for COVID-19. This critical review was conducted to understand COVID-19 disease and highlights the prevailing facts that link phototherapy utilisation as a potential treatment modality for SARS-CoV-2 viral infection. The results demonstrated phototherapy’s efficacy in regulating cytokines and inflammatory mediators, increasing angiogenesis and enhancing healing in chronic pulmonary inflammatory diseases. In conclusion, this review answered the following research question. Which molecular and cellular mechanisms of action of phototherapy have demonstrated great potential in enhancing the immune response and reducing host–viral interaction in COVID-19 patients? Therefore, phototherapy is a promising treatment modality, which needs to be validated further for COVID-19 by robust and rigorous randomised, double blind, placebo-controlled, clinical trials to evaluate its impartial outcomes and safety.

1995 ◽  
Vol 349 (1329) ◽  
pp. 297-297

Many cellular mechanisms use a process of variation and selection to generate specific patterns. Among these, dynamic instability of microtubules has been shown to employ a specific mechanism to intentionally generate variation. In many systems the growth of neurons or neuronal processes is excessive, the final connections being established by stabilization of functional interactions. When changes in neuronal networks take place, such as in metamorphosis, use is made of the plasticity of neuronal connectivity. In the immune system, specific responses are generated by variation and selection. Processes that explore a wide range of conditions and a wide range of structures can be called exploratory processes. These are very robust and capable of responding to damage, variability in the environment and ontogenic changes in the organisms. Such robustness would be useful for adapting to changes that occur during phylogenetic changes as well. Given the extensive history of extinction and radiation in evolution, it may be supposed that these mechanisms have themselves been selected for their capacity to survive rapid changes in the organism and for their ability to generate cellular variation.


2014 ◽  
Vol 37 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Ben R. Newell ◽  
David R. Shanks

AbstractTo what extent do we know our own minds when making decisions? Variants of this question have preoccupied researchers in a wide range of domains, from mainstream experimental psychology (cognition, perception, social behavior) to cognitive neuroscience and behavioral economics. A pervasive view places a heavy explanatory burden on an intelligent cognitive unconscious, with many theories assigning causally effective roles to unconscious influences. This article presents a novel framework for evaluating these claims and reviews evidence from three major bodies of research in which unconscious factors have been studied: multiple-cue judgment, deliberation without attention, and decisions under uncertainty. Studies of priming (subliminal and primes-to-behavior) and the role of awareness in movement and perception (e.g., timing of willed actions, blindsight) are also given brief consideration. The review highlights that inadequate procedures for assessing awareness, failures to consider artifactual explanations of “landmark” results, and a tendency to uncritically accept conclusions that fit with our intuitions have all contributed to unconscious influences being ascribed inflated and erroneous explanatory power in theories of decision making. The review concludes by recommending that future research should focus on tasks in which participants' attention is diverted away from the experimenter's hypothesis, rather than the highly reflective tasks that are currently often employed.


2014 ◽  
Vol 17 (5) ◽  
pp. 521-539 ◽  
Author(s):  
Elizabeth D. E. Papathanassoglou ◽  
Panagiota Miltiadous ◽  
Maria N. Karanikola

Introduction: Exercise attenuates inflammation and enhances levels of brain-derived neurotrophic factor (BDNF). Exercise also enhances parasympathetic tone, although its role in activating the cholinergic anti-inflammatory pathway is unclear. The physiological pathways of exercise’s effect on inflammation are obscure. Aims: To critically review the evidence on the role of BDNF in the anti-inflammatory effects of exercise and its potential involvement in the cholinergic anti-inflammatory pathway. Methods: Critical literature review of studies published in MEDLINE, PubMed, CINAHL, Embase, and Cochrane databases. Results: BDNF is critically involved in the bidirectional signaling between immune and neurosensory cells and in the regulation of parasympathetic system responses. BDNF is also intricately involved in the inflammatory response: inflammation induces BDNF production, and, in turn, BDNF exerts pro- and/or anti-inflammatory effects. Although exercise modulates BDNF and its receptors in lymphocytes, data on BDNF’s immunoregulatory/anti-inflammatory effects in relation to exercise are scarce. Moreover, BDNF increases cholinergic activity and is modulated by parasympathetic system activation. However, its involvement in the cholinergic anti-inflammatory pathway has not been investigated. Conclusion: Converging lines of evidence implicate BDNF in exercise-mediated regulation of inflammation; however, data are insufficient to draw concrete conclusions. We suggest that there is a need to investigate BDNF as a potential modulator/mediator of the anti-inflammatory effects of exercise and of the cholinergic anti-inflammatory pathway during exercise. Such research would have implications for a wide range of inflammatory diseases and for planning targeted exercise protocols.


Acta Naturae ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 54-64
Author(s):  
I. P. Shilovskiy ◽  
M. E. Dyneva ◽  
O. M. Kurbacheva ◽  
D. A. Kudlay ◽  
M. R. Khaitov

Cytokines of the interleukin-1 (IL-1) family play an important role in the realization of the protective functions of innate immunity and are the key mediators involved in the pathogenesis of a wide range of diseases, including various manifestations of allergy. The IL-1 family includes more than 11 members. However, the functions of many of them remain to be elucidated. Recently, new members of the IL-1 family have been discovered. In 2000, several independent research groups reported the discovery of a new interleukin of this family, which was named IL-37, or IL-1F7 (according to the new nomenclature). IL-37 was assigned to the IL-1 family based on its structural similarity with other members of this family. The study of its biological properties showed that its activity changes in inflammatory diseases, such as rheumatoid arthritis, psoriasis, as well as allergic diseases (allergic rhinitis, bronchial asthma, and atopic dermatitis). However, unlike most members of the IL-1 family, IL-37 acts as a negative regulator of inflammation. Activation of IL-37 suppresses inflammation, resulting in the suppression of inflammatory cytokines and chemokines, which in turn prevents infiltration of pro-inflammatory cells, mainly eosinophils and neutrophils. The exact molecular and cellular mechanisms of the anti-inflammatory effect of IL-37 in the development of allergic diseases (AD) have not been fully studied. This review summarizes and analyzes the accumulated experimental data on the role of IL-37 in the pathogenesis of AD, such as allergic rhinitis, bronchial asthma, and atopic dermatitis.


2020 ◽  
Vol 10 (6) ◽  
pp. 339
Author(s):  
Anda Vilmane ◽  
Anna Terentjeva ◽  
Paulius L. Tamosiunas ◽  
Normunds Suna ◽  
Inga Suna ◽  
...  

Meningitis and meningoencephalitis are neurological inflammatory diseases, and although routine diagnostics include testing of a wide range of pathogens, still in many cases, no causative agent is detected. Human parvovirus B19 (B19V), human bocaviruses 1–4 (HBoV1–4), and human parvovirus 4 (hPARV4) are members of the Parvoviridae family and are associated with a wide range of clinical manifestations including neurological disorders. The main aim of this study was to determine whether human parvoviruses infection markers are present among patients with meningitis/meningoencephalitis in Latvia as well as to clarify the role of these viruses on the clinical course of the mentioned diseases. Our study revealed HBoV1–4 and B19V genomic sequences in 52.38% and 16.67% of patients, respectively. Furthermore, symptoms such as the presence of a headache and its severity, fatigue, disorientation, and difficulties to concentrate were significantly frequently present in patients with active parvovirus infection in comparison with parvoviruses negative patients, therefore we suggest that HBoV1–4 and B19V infection should be included in the diagnostics to reduce the number of meningitis/meningoencephalitis with unknown/unexplained etiology.


2021 ◽  
Vol 22 (17) ◽  
pp. 9522
Author(s):  
Monika Stompor–Gorący

Emodin (6-methyl-1,3,8-trihydroxyanthraquinone) is a naturally occurring anthraquinone derivative found in roots and leaves of various plants, fungi and lichens. For a long time it has been used in traditional Chinese medicine as an active ingredient in herbs. Among other sources, it is isolated from the rhubarb Rheum palmatum or tuber fleece-flower Polygonam multiflorum. Emodin has a wide range of biological activities, including diuretic, antibacterial, antiulcer, anti-inflammatory, anticancer and antinociceptive. According to the most recent studies, emodin acts as an antimalarial and antiallergic agent, and can also reverse resistance to chemotherapy. In the present work the potential therapeutic role of emodin in treatment of inflammatory diseases, cancers and microbial infections is analysed.


2021 ◽  
Vol 22 (18) ◽  
pp. 9879
Author(s):  
Anna Krupa ◽  
Irina Kowalska

The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells’ differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies—type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.


2017 ◽  
Vol 45 (01) ◽  
pp. 13-22 ◽  
Author(s):  
Daisy Dai ◽  
Chun-Feng Zhang ◽  
Stephanie Williams ◽  
Chun-Su Yuan ◽  
Chong-Zhi Wang

Angiogenesis is a regulated process integral to many physiological and pathological situations, including carcinogenesis and tumor growth. The majority of the angiogenic processes are related to inflammation. The interplay is not only important in the case of pathogen entry but also influential in chronic inflammatory diseases, tumor growth and tissue regeneration. Modulating the interaction between inflammation and angiogenesis could be an important target for cancer treatment and wound healing alike. Ginseng has a wide range of pharmacological effects, including anti-inflammatory and angiogenesis-modulating activities. This paper presents the recent research progresses on the inhibition of angiogenesis by ginseng and its active constituents, with a particular focus on processes mediated by inflammation. The modulatory role of ginseng compounds in inflammation-mediated angiogenesis involving hypoxia and microRNAs are also discussed. With the potential to modulate the angiogenesis at the transcriptional, translational and protein signaling level via various different mechanisms, ginseng could prove to be effective in cancer therapeutics.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Alejandra de Moreno de LeBlanc ◽  
Silvina del Carmen ◽  
Meritxell Zurita-Turk ◽  
Clarissa Santos Rocha ◽  
Maarten van de Guchte ◽  
...  

Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms that are naturally present in many foods and possess a wide range of therapeutic properties. The aim of this paper is to present an overview of the current expanding knowledge of one of the mechanisms by which LAB and other probiotic microorganisms participate in the prevention and treatment of gastrointestinal inflammatory disease through their immune-modulating properties. A special emphasis will be placed on the critical role of the anti-inflammatory cytokine IL-10, and a brief overview of the uses of genetically engineered LAB that produce this important immune response mediator will also be discussed. Thus, this paper will demonstrate the critical role that IL-10 plays in gastrointestinal inflammatory diseases and how probiotics could be used in their treatment.


2018 ◽  
Vol 29 (9) ◽  
pp. 3912-3921 ◽  
Author(s):  
Charles J Lynch ◽  
Andrew L Breeden ◽  
Evan M Gordon ◽  
Joseph B C Cherry ◽  
Peter E Turkeltaub ◽  
...  

Abstract Noninvasive brain stimulation (NIBS) is a promising treatment for psychiatric and neurologic conditions, but outcomes are variable across treated individuals. In principle, precise targeting of individual-specific features of functional brain networks could improve the efficacy of NIBS interventions. Network theory predicts that the role of a node in a network can be inferred from its connections; as such, we hypothesized that targeting individual-specific “hub” brain areas with NIBS should impact cognition more than nonhub brain areas. Here, we first demonstrate that the spatial positioning of hubs is variable across individuals but reproducible within individuals upon repeated imaging. We then tested our hypothesis in healthy individuals using a prospective, within-subject, double-blind design. Inhibition of a hub with continuous theta burst stimulation disrupted information processing during working-memory more than inhibition of a nonhub area, despite targets being separated by only a few centimeters on the right middle frontal gyrus of each subject. Based upon these findings, we conclude that individual-specific brain network features are functionally relevant and could leveraged as stimulation sites in future NIBS interventions.


Sign in / Sign up

Export Citation Format

Share Document