scholarly journals Neuroprotective Activity of Polyphenol-Rich Ribes diacanthum Pall against Oxidative Stress in Glutamate-Stimulated HT-22 Cells and a Scopolamine-Induced Amnesia Animal Model

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 895
Author(s):  
Hyun Jeong Kim ◽  
Seung Yeon Baek ◽  
Dai-Eun Sok ◽  
Kun Jong Lee ◽  
Young-Jun Kim ◽  
...  

Ribes diacanthum Pall, a native Mongolian medicinal plant, has been reported to show antioxidant activities due to its polyphenol and flavonoid content, and is especially rich in the ethyl acetate fraction from an 80% methanol extraction (RDP). We assessed the cytoprotective effect of RDP on glutamate-caused oxidative stress and apoptosis in mouse hippocampal neuronal cells (HT-22 cells). Cell viability was significantly recovered by RDP treatment. Also, RDP effectively decreased the glutamate-induced production of intracellular reactive oxygen species (ROS). In flow cytometric analysis, apoptotic cells and the mitochondrial membrane potential were suppressed by RDP. In the Western blotting analysis, we found that RDP not only decreased the release of apoptotic proteins but also recovered anti-apoptotic protein. Additionally, RDP enhanced the antioxidant defense system by regulating the expression of antioxidant enzymes. Furthermore, treatment with RDP activated the BDNF/TrkB pathway. In accordance with the in vitro results, RDP meliorated memory deficit by defending hippocampal neuronal cells against oxidative damage in scopolamine-injected mice. Taken together, our present study showed that RDP exerted antioxidant and neuroprotective actions against oxidative stress. Therefore, RDP might facilitate the development of candidates for functional health foods for neurodegenerative disorders.

2019 ◽  
Author(s):  
Stephanie E. Vargas Abonce ◽  
Mélanie Leboeuf ◽  
Alain Prochiantz ◽  
Kenneth L. Moya

ABSTRACTMost homeoprotein transcription factors have a highly conserved internalization domain used in intercellular transfer. Internalization of homeoproteins ENGRAILED1 or ENGRAILED2 promotes the survival of adult dopaminergic cells, whereas that of OTX2 protects adult retinal ganglion cells. Here we characterize the in vitro neuroprotective activity of several homeoproteins in response to H2O2. Protection is observed with ENGRAILED1, ENGRAILED2, OTX2, GBX2 and LHX9 on midbrain and striatal embryonic neurons whereas cell-permeable c-MYC shows no protective effects. Therefore, five homeoproteins belonging to 3 different classes (ANTENNAPEDIA, PAIRED and LIM) share the ability to protect embryonic neurons from midbrain and striatum. Because midbrain and striatal neurons do not express the same repertoire of the 4 proteins, a lack of neuronal specificity together with a general protective activity can be proposed. In contrast, hEN1 and GBX2 exerted no protection on non-neuronal cells including mouse embryo fibroblasts, macrophages or HeLa cells. For the 4 proteins, protection against cell-death correlated with a reduction in the number of H2O2-induced DNA break foci in midbrain and striatal neurons. In conclusion, within the limit of the number of cell types and homeoproteins tested, homeoprotein protection against oxidative stress-induced DNA breaks and death is specific to neurons but shows no homeoprotein or neuronal type specificity.SIGNIFICANCE STATEMENTHomeoproteins are DNA binding proteins regulating gene expression throughout life. Many of them transfer between cells and are thus internalized by live cells. This has allowed for their use as therapeutic proteins in animal models of Parkinson disease and glaucoma. Part of their therapeutic activity is through a protection against neuronal death. Here we show that internalized homeoproteins from three different classes protect embryonic ventral midbrain and striatal neurons from oxidative stress, both at the level of DNA damage and survival. The interest of this finding is that it lends weight to the possibility that many homeoproteins play a role in neuroprotection through shared mechanisms involving, in particular, DNA protection against stress-induced breaks.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1654
Author(s):  
Cong Duc Nguyen ◽  
Gihyun Lee

Melittin, a 26-amino acid peptide, is the main component of the venom of four honeybee species and exhibits neuroprotective actions. However, it is unclear how melittin ameliorates neuronal cells in oxidative stress and how it affects memory impairment in an in vivo model. We evaluated the neuroprotective effect of melittin on Aβ25–35-induced neuro-oxidative stress in both in vitro HT22 cells and in vivo animal model. Melittin effectively protected against HT22 cell viability and significantly deregulated the Aβ25–35-induced overproduction of intracellular reactive oxygen species. Western blot analysis showed that melittin suppressed cell apoptosis and regulated Bax/Bcl-2 ratio, as well as the expression of proapoptotic related factors: Apoptosis-inducing factor (AIF), Calpain, Cytochrome c (CytoC), Cleaved caspase-3 (Cleacas3). Additionally, melittin enhanced the antioxidant defense pathway by regulating the nuclear translocation of nuclear factor erythroid 2-like 2 (Nrf2) thus upregulated the production of the heme oxygenase-1 (HO-1), a major cellular antioxidant enzyme combating neuronal oxidative stress. Furthermore, melittin treatment activated the Tropomyosin-related kinase receptor B (TrkB)/cAMP Response Element-Binding (CREB)/Brain-derived neurotrophic factor (BDNF), contributing to neuronal neurogenesis, and regulating the normal function of synapses in the brain. In our in vivo experiment, melittin was shown to enhance the depleted learning and memory ability, a novel finding. A mouse model with cognitive deficits induced by Aβ25–35 intracerebroventricular injection was used. Melittin had dose-dependently enhanced neural-disrupted animal behavior and enhanced neurogenesis in the dentate gyrus hippocampal region. Further analysis of mouse brain tissue and serum confirmed that melittin enhanced oxidant–antioxidant balance, cholinergic system activity, and intercellular neurotrophic factors regulation, which were all negatively altered by Aβ25–35. Our study shows that melittin exerts antioxidant and neuroprotective actions against neural oxidative stress. Melittin can be a potential therapeutic agent for neurodegenerative disorders.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wanchen Ning ◽  
Simin Li ◽  
Jokyab Tsering ◽  
Yihong Ma ◽  
Honghong Li ◽  
...  

Background. Oxidative stress is implicated in the progression of many neurological diseases, which could be induced by various chemicals, such as hydrogen peroxide (H2O2) and acrylamide. Triphala is a well-recognized Ayurvedic medicine that possesses different therapeutic properties (e.g., antihistamine, antioxidant, anticancer, anti-inflammatory, antibacterial, and anticariogenic effects). However, little information is available regarding the neuroprotective effect of Triphala on oxidative stress. Materials and Methods. An in vitro H2O2-induced SH-SY5Y cell model and an in vivo acrylamide-induced zebrafish model were established. Cell viability, apoptosis, and proliferation were examined by MTT assay, ELISA, and flow cytometric analysis, respectively. The molecular mechanism underlying the antioxidant activity of Triphala against H2O2 was investigated dose dependently by Western blotting. The in vivo neuroprotective effect of Triphala on acrylamide-induced oxidative injury in Danio rerio was determined using immunofluorescence staining. Results. The results indicated that Triphala plays a neuroprotective role against H2O2 toxicity in inhibiting cell apoptosis and promoting cell proliferation. Furthermore, Triphala pretreatment suppressed the phosphorylation of the mitogen-activated protein kinase (MARK) signal pathway (p-Erk1/2, p-JNK1/2, and p-p38), whereas it restored the activities of antioxidant enzymes (superoxide dismutase 1 (SOD1) and catalase) in the H2O2-treated SH-SY5Y cells. Consistently, similar protective effects of Triphala were observed in declining neuroapoptosis and scavenging free radicals in the zebrafish central neural system, possessing a critical neuroprotective property against acrylamide-induced oxidative stress. Conclusion. In summary, Triphala is a promising neuroprotective agent against oxidative stress in SH-SY5Y cells and zebrafishes with significant antiapoptosis and antioxidant activities.


2009 ◽  
Vol 24 (5) ◽  
pp. 1138-1140 ◽  
Author(s):  
Seung Hyun Kim ◽  
Mi Kyeong Lee ◽  
Ki Yong Lee ◽  
Sang Hyun Sung ◽  
Jinwoong Kim ◽  
...  

Author(s):  
Mohammed Aliyu Sulaiman ◽  
Daniel Dahiru ◽  
Mohammed Auwal Ibrahim ◽  
Ahmed Ibrahim Hayatu

Background: Oxidative stress is involved in the pathogenesis of hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, muscular dystrophy, aging and other associated diseases. Vitex doniana is used in Adamawa, northern Nigeria to treat oxidative stress associated diseases. However, the antioxidative effects of the plant have not been scientifically examined in oxidative stress experimental animal models. The aim of this study is to investigate the in vitro and in vivo antioxidant activities of aqueous and ethanol stem bark extracts of Vitex doniana in oxidative stress model of rats. Methods: The study used 35 adult albino rats weighing 175 ± 25 g, of which 30 were induced with oxidative stress by intraperitoneal injection of doxorubicin (10 mg/kg) for three consecutive days. Animals were treated by oral administration of silymarin (100 mg/kg) and Vitex doniana aqueous or ethanol extract (100 mg/kg and 200 mg/kg) for 14 consecutive days before they were sacrificed on the 15th day and blood was analyzed for biochemical indices of oxidative stress. Results: The results of the phytochemistry showed the presence of alkaloids, tannins, flavonoids, steroids, phenols, saponins, terpenoids, glycosides: and total flavonoids (52.70 ± 1.60 mg/ml and 75.40 ± 0.80 mg/ml), total phenols (21.45 ± 1.54 mg/ml and 26.50 ± 1.22 mg/ml) for aqueous and ethanol stem bark extracts respectively. The extracts scavenged DPPH radical, reduced Fe3+ and inhibited lipid peroxidation. Doxorubicin significantly (p<0.05) lowered the levels of SOD, CAT, GR and TAS and significantly (p<0.05) but, increased the level of LPO. Oral treatment with Vitex doniana extracts significantly (p<0.05) increased the activities of CAT, GR, SOD and TAS while LPO was significantly (p<0.05) lowered. Vitex doniana stem bark extracts significantly (p<0.05) improved the biochemical derangements observed in the induced untreated animals in comparable manner to that of Silymarin. Conclusion: The present study provides the scientific rationale for the use of Vitex doniana stem bark in traditional medicine and has a viable antioxidative capacity both in vitro and in vivo.


2021 ◽  
Vol 18 (3) ◽  
pp. 245-259
Author(s):  
Stephen Adakole Ejembi ◽  
Titilayo Omolara Johnson ◽  
Jonathan Dingkwoet Dabak ◽  
Augustina Oduje Akinsanmi ◽  
Jane-Rose Ifuanyachi Oche ◽  
...  

Oxidative stress overwhelms the antioxidant mechanisms of living systems, with active involvement in the pathogenesis of several diseases. Natives of Gangnim in the Plateau State of Nigeria may be unknowingly endowed with some protective advantages against oxidative stress for their habitual consumption of Artemisia annua tea. The antioxidant activities of A. annua extracts were determined using in vitro methods and the inhibitory potentials of twenty-nine (29) bioactive compounds of the plant against oxidative stress target proteins were assessed through molecular docking analysis. These extracts showed significantly high activities in scavenging nitric oxide, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reducing ferric (Fe3+) to ferrous (Fe2+) iron. Virtually, none of the bioactive compounds binds to the active site of the antioxidant protein targets. Rather, 72.41, 93.10 and 75.86% of these compounds bind with high binding affinity to the activator binding sites of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) respectively. 7,8-dimethylalloxazine (-8.10 kcal/mol) ranked highest as a prospective inhibitor of xanthine oxidase (XOX). The antioxidant activity exhibited by the extracts of the locally cultivated A. annua and the molecular interactions of its bioactive compounds against the protein targets used predict that oxidative stress inhibition could be effectively achieved with these phytochemicals.


2017 ◽  
Vol 7 (4) ◽  
pp. 20160113 ◽  
Author(s):  
Yuru Deng ◽  
Edlyn Li-Hui Lee ◽  
Ketpin Chong ◽  
Zakaria A. Almsherqi

The frequent appearance of non-lamellar membrane arrangements such as cubic membranes (CMs) in cells under stressed or pathological conditions points to an intrinsic cellular response mechanism. CM represents highly curved, three-dimensional nano-periodic structures that correspond to mathematically well-defined triply periodic minimal surfaces. Specifically, cellular membrane may transform into CM organization in response to pathological, inflammatory and oxidative stress conditions. CM organization, thus, may provide an advantage to cope with various types of stress. The identification of inducible membrane systems, such as in the mitochondrial inner membranes to cubic morphology upon starvation, opens new avenues for understanding the molecular mechanisms of cellular responses to oxidative stress. In this study, we compared the cellular responses of starved and fed amoeba Chaos carolinense to oxidative stress. Food deprivation from C. carolinense induces a significant increase in prooxidants such as superoxide and hydrogen peroxide. Surprisingly, we observed a significant lower rate of biomolecular damage in starved cells (with higher free radicals generation) when compared with fed cells. Specifically, lipid and RNA damages were significantly less in starved cells compared with fed cells. This observation was not due to the upregulation of intracellular antioxidants, as starved amoeba show reduced antioxidant enzymatic activities; however, it could be attributed to CM formation. CM could uptake and retain short segments of nucleic acids (resembles cellular RNA) in vivo and in vitro. Previous results showed that nucleic acids retained within CM sustain a minimal oxidative damage in vitro upon exposure to high level of superoxide. We thus propose that CM may act as a ‘protective’ shelter to minimize the oxidation of biologically essential macromolecules such as RNA. In summary, we examined enzymatic antioxidant activities as well as oxidative damage biomarkers in starved amoeba C. carolinense in correlation with the potential role of CM as an optimal intracellular membrane organization for the protection of biological macromolecules against oxidative damage.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Woong Jin Bae ◽  
U. Syn Ha ◽  
Jin Bong Choi ◽  
Kang Sup Kim ◽  
Su Jin Kim ◽  
...  

Higher testicular temperature results in altered spermatogenesis due to heat-related oxidative stress. We examined the effects of decursin extracted fromAngelica gigasNakai on antioxidant activityin vitroand in a cryptorchidism-induced infertility rat model. TM3 Leydig cell viability was measured based on oxidative stress according to treatment. Either distilled water or AG 400 mg/kg ofA. gigasextract was administered orally for 4 weeks after unilateral cryptorchidism was induced. After 1, 2, and 4 weeks, six rats from the control group and six rats from treatment group were sacrificed. Testicular weight, semen quality, antioxidant activities, nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and mRNA expression of Nrf2-regulated genes were analyzed. Treatment withA. gigasextract (1) protected TM3 cells against oxidative stress in a dose-dependent manner, (2) improved the mean weight of the cryptorchid testis, (3) maintained sperm counts, motility, and spermatogenic cell density, (4) decreased levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and increased levels of superoxide dismutase (SOD), (5) significantly increased Nrf2 and heme oxygenase-1 (HO-1), and (6) significantly decreased apoptosis. This study suggests that decursin extracted fromA. gigasis a supplemental agent that can reduce oxidative stress by Nrf2-mediated upregulation of HO-1 in rat experimentally induced unilateral cryptorchidism and may improve cryptorchidism-induced infertility.


2018 ◽  
Vol 37 (12) ◽  
pp. 1268-1281 ◽  
Author(s):  
A Ahangarpour ◽  
S Alboghobeish ◽  
AA Oroojan ◽  
MA Dehghani

The growing use of carbon nanotubes (CNTs) emphasizes the importance of its potential toxic effects on the human health. Previous studies proved that CNTs caused oxidative stress and decreased cell viability. On the other hand, reactive oxygen species (ROS) and oxidative stress impaired β-cell functions and reduced the insulin secretion. However, there is not any study on the effects of CNTs on islets and β-cells. Therefore, the present study aimed to evaluate the effects of single-walled CNTs (SWCNTs) on oxidative stress in islets in addition to the protective effects of naringin (NRG) as an antioxidant . We examined the effects of SWCNTs and naringin on islets by 3,4 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay; measurement of insulin secretion, ROS, and malondialdehyde (MDA); activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) peroxidase (GSH-Px); and content of GSH and mitochondrial membrane potential (MMP). The MTT assay demonstrated that decreased viability of islets cells was dose-dependent with exposure to SWCNTs. Further studies revealed that SWCNTs decreased insulin secretion and MMP, induced the formation of ROS, increased the level of MDA, and decreased the activities of SOD, GSH-Px, and CAT and content of GSH. Furthermore, the pretreatment of islets with naringin significantly reverted back these changes. These findings revealed that SWCNTs might induce the oxidative stress to pancreatic islets, causing the occurrence of diabetes, and the protective effects of naringin that was mediated by augmentation of the antioxidant defense system of islets. Our research indicated the necessity for further in vivo and in vitro researches on the effects of SWCNTs and naringin on diabetes.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Bo Dam Lee ◽  
Jae-Myung Yoo ◽  
Seong Yeon Baek ◽  
Fu Yi Li ◽  
Dai-Eun Sok ◽  
...  

3,3′-Diindolylmethane (DIM), a metabolite of indole-3-carbinol present in Brassicaceae vegetables, possesses various health-promoting effects. Nonetheless, the effect of DIM on neurodegenerative diseases has not been elucidated clearly. In this study, we hypothesized DIM may protect neuronal cells against oxidative stress-induced apoptosis by promoting the formation of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes through stabilizing the activation of the tropomyosin-related kinase receptor B (TrkB) cascade and we investigated the effect of DIM on oxidative stress-mediated neurodegenerative models. DIM protected neuronal cells against oxidative stress-induced apoptosis by regulating the expression of apoptosis-related proteins in glutamate-treated HT-22 cells. Additionally, DIM improved the expression of BDNF and antioxidant enzymes, such as heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinine oxidoreductase-1, by promoting the activation of the TrkB/protein kinase B (Akt) pathway in the cells. Consistent with in vitro studies, DIM attenuated memory impairment by protecting hippocampal neuronal cells against oxidative damage in scopolamine-treated mice. Conclusionally, DIM exerted neuroprotective and antioxidant actions through the activation of both BDNF production and antioxidant enzyme formation in accordance with the TrkB/Akt pathway in neuronal cells. Such an effect of DIM may provide information for the application of DIM in the prevention of and therapy for neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document