scholarly journals Assessment of the RACPC Performance under Diffuse Radiation for Use in BIPV System

2020 ◽  
Vol 10 (10) ◽  
pp. 3552
Author(s):  
Stephania Foster ◽  
Firdaus Muhammad-Sukki ◽  
Roberto Ramirez-Iniguez ◽  
Daria Freier Raine ◽  
Jose Deciga-Gusi ◽  
...  

In the last four decades there has been a significant increase in solar photovoltaic (PV) capacity, which makes solar one of the most promising renewable energy sources. Following this trend, solar power would become the world’s largest source of electricity by 2050. Building Integrated Photovoltaic (BIPV) systems, in which conventional materials can be replaced with PV panels that become an integral part of the building, can be enhanced with concentrating photovoltaic (CPV) systems. In order to increase the cost efficiency of a BIPV system, an optical concentrator can be used to replace expensive PV material with a lower cost option, whilst increasing the electrical output through the concentration of solar power. A concentrator called rotationally asymmetrical compound parabolic concentrator (RACPC) was analysed in this work under diffuse light conditions. Software simulations and experimental work were carried out to determine the optical concentration gain of the concentrator. Results from this work show that, under diffuse light, the RACPC has an optical concentration gain of 2.12. The experimental work showed a value of 2.20, which confirms the results with only a 3.8% difference.

2017 ◽  
Vol 56 (5) ◽  
pp. 1483-1497 ◽  
Author(s):  
Christopher J. Smith ◽  
Julia A. Crook ◽  
Rolf Crook ◽  
Lawrence S. Jackson ◽  
Scott M. Osprey ◽  
...  

AbstractIn recent years, the idea of geoengineering, artificially modifying the climate to reduce global temperatures, has received increasing attention because of the lack of progress in reducing global greenhouse gas emissions. Stratospheric sulfate injection (SSI) is a geoengineering method proposed to reduce planetary warming by reflecting a proportion of solar radiation back into space that would otherwise warm the surface and lower atmosphere. The authors analyze results from the Met Office Hadley Centre Global Environment Model, version 2, Carbon Cycle Stratosphere (HadGEM2-CCS) climate model with stratospheric emissions of 10 Tg yr−1 of SO2, designed to offset global temperature rise by around 1°C. A reduction in concentrating solar power output of 5.9% on average over land is shown under SSI relative to a baseline future climate change scenario (RCP4.5) caused by a decrease in direct radiation. Solar photovoltaic energy is generally less affected as it can use diffuse radiation, which increases under SSI, at the expense of direct radiation. The results from HadGEM2-CCS are compared with the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) from the Geoengineering Model Intercomparison Project (GeoMIP), with 5 Tg yr−1 emission of SO2. In many regions, the differences predicted in solar energy output between the SSI and RCP4.5 simulations are robust, as the sign of the changes for both HadGEM2-CCS and GEOSCCM agree. Furthermore, the sign of the total and direct annual mean radiation changes evaluated by HadGEM2-CCS agrees with the sign of the multimodel mean changes of an ensemble of GeoMIP models over the majority of the world.


World ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 90-103
Author(s):  
Ai Ni Teoh ◽  
Yun Ii Go ◽  
Tze Chuen Yap

To meet the larger demand for electricity supply, Malaysia needs to achieve two main psychosocial conditions, among others—having the awareness of renewable energy and demonstrating energy-conserving behavior. To examine whether Malaysia has met these two conditions, we recruited 225 participants (n = 109 women, n = 113 men, n = 3 did not indicate) to complete a series of questionnaires. The results showed that the public was aware of the option of solar energy but was not ready to install solar photovoltaic panels after being told the cost incurred. Furthermore, the public did not show satisfying energy-conserving behaviors. To boost the installation of solar power, increasing the public’s energy knowledge and implementing policies to reduce the installation cost might be helpful. These findings highlighted Malaysia’s low readiness for solar power and shed some light on what needs to be done to be better prepared for solar power.


2018 ◽  
Vol 1 (2) ◽  
pp. 106-111
Author(s):  
Kwabena Abrokwa Gyimah

The growth and use of photovoltaic (PV) cannot be disputed as the world craves for cleaner energy options. Energy demandsalso keep on rising and buildings alone contribute about 40% of energy use in the world. This means that even if the worldshifts completely to cleaner energy options, buildings will still demand more energy and therefore sustainable energy sourcesfor buildings should be encouraged. Again, the initial setup cost of fossil fuel energy is lower than renewable energy. To makerenewable energy attractive, cheaper setup cost should be achieved and this can be done by a cost offset through buildingelement replacement by PV. This means the use of Building Integrated Photovoltaic (BIPV) is of high potential for financialoffset than Building Applied Photovoltaic (BAPV). Quantitative data was gathered on roofing sheets cost and solar integrationinto roof cost. The average cost of roofing sheets for an area of 24m2 roof spaces is $2,160.00 and the cost of integrating asolar PV on that same space is $9,600.00. The cost of constructing the space with roofing sheets is used to offset the cost ofinstalling the solar PV to reduce it to $7,440.00. Autodesk Ecotect software was used to know the energy generated from roofintegration of solar and this is 16,512kWh. This energy generated is converted to monetary value of $3,302.00 per year. Thebreakeven time after offset reduction is approximately 2 years 6 months due to monetary returns on the solar PV.


2017 ◽  
Vol 7 (1) ◽  
pp. 43-52
Author(s):  
Mochamad Tamim Ma’ruf

One-solving methods and techniques necessary to avoid inefficiencies and not economic costs as well as reduce the cost of housing construction is the method of Value Engineering. Value engineering is a method and cost control techniques to analyze a function to its value at the lowest cost alternative (most economical) without reducing the quality desired.At the writing of this study used a comparison method by comparing the initial design to the design proposal of the author. In the housing projects Upgrading Tirto Penataran Asri type 70, the application of Value Engineering conducted on the job a couple walls and roofs pair by replacing some work items with a more economical alternative but does not change the original function and high aesthetic level and still qualify safe. For that performed the step of determining a work item, the alternative stage, the analysis stage, and the stage of recommendations to get a Value Engineering application and cost savings against the wall a couple of work items and partner roof.The proposed design as compared to the initial design. Work items discussed was the work of a couple wall having analyzed obtained savings of Rp. 2,747,643.56 and the work of the roof pair obtained savings of Rp. 2,363,446.80. Thus the total overall savings gained is Rp 5,111,090.36 or savings of 0048%.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2405
Author(s):  
Samar Fatima ◽  
Verner Püvi ◽  
Ammar Arshad ◽  
Mahdi Pourakbari-Kasmaei ◽  
Matti Lehtonen

Power distribution networks are transitioning from passive towards active networks considering the incorporation of distributed generation. Traditional energy networks require possible system upgrades due to the exponential growth of non-conventional energy resources. Thus, the cost concerns of the electric utilities regarding financial models of renewable energy sources (RES) call for the cost and benefit analysis of the networks prone to unprecedented RES integration. This paper provides an evaluation of photovoltaic (PV) hosting capacity (HC) subject to economical constraint by a probabilistic analysis based on Monte Carlo (MC) simulations to consider the stochastic nature of loads. The losses carry significance in terms of cost parameters, and this article focuses on HC investigation in terms of losses and their associated cost. The network losses followed a U-shaped trajectory with increasing PV penetration in the distribution network. In the investigated case networks, increased PV penetration reduced network costs up to around 40%, defined as a ratio to the feeding secondary transformer rating. Above 40%, the losses started to increase again and at 76–87% level, the network costs were the same as in the base cases of no PVs. This point was defined as the economical PV HC of the network. In the case of networks, this level of PV penetration did not yet lead to violations of network technical limits.


Clean Energy ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 57-78
Author(s):  
Sohaib Nasr Mohamed Abdalla ◽  
Hakan Özcan

Abstract Developing nations have a critical need to increase electricity supply. Sudan has much unrealized potential for generating solar energy, particularly in the northern region. This research study focuses on designing a 1-GW solar power station in northern Sudan using the PVsyst7.0 software program. To determine the appropriate location for the solar-energy station, 14 criteria were evaluated. This process is generic and suitable for use in any other country. The method for conducting cash-flow estimates and return on investment is illustrated in the economic evaluation. The city of Dongola, the capital of the northern state, was selected because of its high annual irradiance on a horizontal surface at ~2333.2 kWh/m2. The simulation results show that the annual optimum tilt angle of inclination for photovoltaic (PV) modules is 30°, the energy production is 1 979 259 MWh/yr and the average annual performance rate is 0.810. In addition, the electric power consumption per capita in Sudan is 269 kWh/yr, so the proposed solar power plant with 1 979 259 MWh/yr can provide energy to 7.4 million people per year annually and reduce carbon emissions by ~18 million tons of carbon dioxide per year. Economic calculations show that the levelized cost of electricity (LCOE) is $0.06/kWh, the discounted payback period is ~11 years and the net present value is $635 291 000. As a result, the proposed grid-connected PV solar plant is considered economically, technically and environmentally feasible in Sudan.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Jaime Manning ◽  
Deborah Power ◽  
Amy Cosby

The five freedoms and, more recently, the five domains of animal welfare provide internationally recognised frameworks to evaluate animal welfare practices which recognise both the physical and mental wellbeing needs of animals, providing a balanced view of their ability to cope in their environment. Whilst there are many techniques to measure animal welfare, the challenge lies with how best to align these with future changes in definitions and expectations, advances in science, legislative requirements, and technology improvements. Furthermore, enforcement of current animal welfare legislation in relation to livestock in Australia and the reliance on self-audits for accreditation schemes, challenges our ability to objectively measure animal welfare. On-animal sensors have enormous potential to address animal welfare concerns and assist with legislative compliance, through continuous measurement and monitoring of an animal’s behavioural state and location being reflective of their wellbeing. As reliable animal welfare measures evolve and the cost of on-animal sensors reduce, technology adoption will increase as the benefits across the supply chain are realised. Future adoption of on-animal sensors by producers will primarily depend on a value proposition for their business being clear; algorithm development to ensure measures are valid and reliable; increases in producer knowledge, willingness, and trust in data governance; and improvements in data transmission and connectivity.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1063
Author(s):  
Catalina Hernández Moris ◽  
Maria Teresa Cerda Guevara ◽  
Alois Salmon ◽  
Alvaro Lorca

The energy sector in Chile demands a significant increase in renewable energy sources in the near future, and concentrated solar power (CSP) technologies are becoming increasingly competitive as compared to natural gas plants. Motivated by this, this paper presents a comparison between solar technologies such as hybrid plants and natural gas-based thermal technologies, as both technologies share several characteristics that are comparable and beneficial for the power grid. This comparison is made from an economic point of view using the Levelized Cost of Energy (LCOE) metric and in terms of the systemic benefits related to flexibility, which is very much required due to the current decarbonization scenario of Chile’s energy matrix. The results show that the LCOE of the four hybrid plant models studied is lower than the LCOE of the gas plant. A solar hybrid plant configuration composed of a photovoltaic and solar tower plant (STP) with 13 h of storage and without generation restrictions has an LCOE 53 USD/MWh, while the natural gas technology evaluated with an 85% plant factor and a variable fuel cost of 2.0 USD/MMBtu has an LCOE of 86 USD/MWh. Thus, solar hybrid plants under a particular set of conditions are shown to be more cost-effective than their closest competitor for the Chilean grid while still providing significant dispatchability and flexibility.


Sign in / Sign up

Export Citation Format

Share Document