scholarly journals Modelling of Carotenoids Content in Red Clover Sprouts Using Light of Different Wavelength and Pulsed Electric Field

2020 ◽  
Vol 10 (12) ◽  
pp. 4143
Author(s):  
Ilona Gałązka-Czarnecka ◽  
Ewa Korzeniewska ◽  
Andrzej Czarnecki ◽  
Paweł Kiełbasa ◽  
Tomasz Dróżdż

The paper presents the results of influence the light of different wavelengths and pulsed electric fields on the content of carotenoids. Seeds germination was carried out in a climatic chamber with phytotron system. The experiment was carried out under seven growing conditions differing in light-emitting diode (LED) wavelengths and using pulsed electric fields (PEFs) with different strength applied before sowing. Cultivation of the sprouts was carried out for seven days at relative humidity 80% and 20 ± 1 °C. Different light wavelengths were used during cultivation: white light (380–780 nm), UVA (340 nm), blue (440 nm), and red (630 nm). In addition, the pulsed electric field (PEF) with three values of strength equal to 1, 2.5 and 5 kV/cm, respectively, was applied to three series of sprouts before sowing. Sprouts treated with the PEF were grown under white light (380–780 nm). The light exposure time for all experimental series of sprouts was 12/12 h (12 h light, 12 h dark for seven days). Lutein is the dominant carotenoid in germinating red clover seeds, the content of which varies from 743 mg/kg in sprouts grown in red light, 862 mg/kg in sprouts grown in UVA, to 888 mg/kg in sprouts grown in blue light. Blue light in the cultivation of red clover sprouts had the most beneficial effect on the increase of carotenoids content and amounted to 42% in β-carotene, 19% in lutein, and 14% in zeaxanthin. It confirms that modelling the content of carotenoids is possible using UVA and blue light (440 nm) during seed cultivation. An increase in the content of β-carotene and lutein in red clover sprouts was obtained in comparison to the test with white light without PEF pre-treatment, respectively by 8.5% and 6%. At the same time a 3.3% decrease in the content of zeaxanthin was observed. Therefore, it can be concluded that PEF pre-treatment may increase mainly the content of β-carotene.

2006 ◽  
Vol 69 (8) ◽  
pp. 2016-2018 ◽  
Author(s):  
E. SENTANDREU ◽  
L. CARBONELL ◽  
D. RODRIGO ◽  
J. V. CARBONELL

Pulsed electric field treatment has been claimed to produce more acceptable chilled citrus juices than those obtained by conventional thermal treatment. The pectin methylesterase activity and the acceptability of nine juices obtained from Clementine mandarins, Valencia oranges, and Ortanique fruits (hybrid of mandarin and orange), untreated, pasteurized (85°C for 10 s), and treated by pulsed electric fields (25 kV/cm for 330 μs), were evaluated. The treatments, selected to reach a similar level of pectin methylesterase inactivation, produced juices that did not differ in acceptability from each other for the three varieties and in all cases were less acceptable than the untreated juice.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1132 ◽  
Author(s):  
Philip M. Graybill ◽  
Rafael V. Davalos

Pulsed electric fields (PEFs) have become clinically important through the success of Irreversible Electroporation (IRE), Electrochemotherapy (ECT), and nanosecond PEFs (nsPEFs) for the treatment of tumors. PEFs increase the permeability of cell membranes, a phenomenon known as electroporation. In addition to well-known membrane effects, PEFs can cause profound cytoskeletal disruption. In this review, we summarize the current understanding of cytoskeletal disruption after PEFs. Compiling available studies, we describe PEF-induced cytoskeletal disruption and possible mechanisms of disruption. Additionally, we consider how cytoskeletal alterations contribute to cell–cell and cell–substrate disruption. We conclude with a discussion of cytoskeletal disruption-induced anti-vascular effects of PEFs and consider how a better understanding of cytoskeletal disruption after PEFs may lead to more effective therapies.


2013 ◽  
Vol 141 (3) ◽  
pp. 3131-3138 ◽  
Author(s):  
Anna Vallverdú-Queralt ◽  
Isabel Odriozola-Serrano ◽  
Gemma Oms-Oliu ◽  
Rosa M Lamuela-Raventós ◽  
Pedro Elez-Martínez ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 451
Author(s):  
Justina Kavaliauskaitė ◽  
Auksė Kazlauskaitė ◽  
Juozas Rimantas Lazutka ◽  
Gatis Mozolevskis ◽  
Arūnas Stirkė

The possibility to artificially adjust and fine-tune gene expression is one of the key milestones in bioengineering, synthetic biology, and advanced medicine. Since the effects of proteins or other transgene products depend on the dosage, controlled gene expression is required for any applications, where even slight fluctuations of the transgene product impact its function or other critical cell parameters. In this context, physical techniques demonstrate optimistic perspectives, and pulsed electric field technology is a potential candidate for a noninvasive, biophysical gene regulator, exploiting an easily adjustable pulse generating device. We exposed mammalian cells, transfected with a NF-κB pathway-controlled transcription system, to a range of microsecond-duration pulsed electric field parameters. To prevent toxicity, we used protocols that would generate relatively mild physical stimulation. The present study, for the first time, proves the principle that microsecond-duration pulsed electric fields can alter single-gene expression in plasmid context in mammalian cells without significant damage to cell integrity or viability. Gene expression might be upregulated or downregulated depending on the cell line and parameters applied. This noninvasive, ligand-, cofactor-, nanoparticle-free approach enables easily controlled direct electrostimulation of the construct carrying the gene of interest; the discovery may contribute towards the path of simplification of the complexity of physical systems in gene regulation and create further synergies between electronics, synthetic biology, and medicine.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


2014 ◽  
Vol 23 ◽  
pp. 79-86 ◽  
Author(s):  
I. Aguiló-Aguayo ◽  
M.B. Hossain ◽  
N. Brunton ◽  
J. Lyng ◽  
J. Valverde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document