scholarly journals Tow Deformation Behaviors in Resin-Impregnated Glass Fibers under Different Flow Rates

2021 ◽  
Vol 11 (8) ◽  
pp. 3575
Author(s):  
Sung-Woong Choi ◽  
Sung-Ha Kim ◽  
Mei-Xian Li ◽  
Jeong-Hyeon Yang ◽  
Hyeong-Min Yoo

With the rapid development of high-performance fibers such as carbon, enhanced glass fibers in structural applications, the use of fiber-reinforced composite (FRC) materials has also increased in many areas. Liquid composite molding (LCM) is a widely used manufacturing process in composite manufacturing; however, the rapid impregnation of resin in the reinforcing fibers during processing poses a significant issue. The optimization of resin impregnation is related to tow deformations in the reinforcing fibers. The present study therefore focuses on this tow deformation. The permeability behaviors in double-scale porous media were observed under different flow rates and viscosity conditions to examine the overall tendencies of structural changes in the reinforcement. The permeability results showed hysteresis with increasing and decreasing flow rate conditions of 50–800 mm3/s, indicating structural changes in the reinforcement. The tow behaviors of the double-scale porous media with respect to the thickness and flow rate were investigated in terms of the representative indices of the minor axis (tow thickness) and major axis. The minor axis and major axis of the tow showed decreasing and increasing trends of 2–5% and 2%, respectively, with minimum and maximum values at different positions along the reinforcement, affected by the different hydrodynamic entry lengths. Finally, the deformed tow behavior was observed microscopically to examine the behavior of the tow at different flow rates.

2021 ◽  
pp. petgeo2020-062
Author(s):  
Jingtao Zhang ◽  
Haipeng Zhang ◽  
Donghee Lee ◽  
Sangjin Ryu ◽  
Seunghee Kim

Various energy recovery, storage, conversion, and environmental operations may involve repetitive fluid injection and, thus, cyclic drainage-imbibition processes. We conducted an experimental study for which polydimethylsiloxane (PDMS)-based micromodels were fabricated with three different levels of pore-space heterogeneity (coefficient of variation, where COV = 0, 0.25, and 0.5) to represent consolidated and/or partially consolidated sandstones. A total of ten injection-withdrawal cycles were applied to each micromodel at two different flow rates (0.01 and 0.1 mL/min). The experimental results were analyzed in terms of flow morphology, sweep efficiency, residual saturation, the connection of fluids, and the pressure gradient. The pattern of the invasion and displacement of nonwetting fluid converged more readily in the homogeneous model (COV = 0) as the repetitive drainage-imbibition process continued. The overall sweep efficiency converged between 0.4 and 0.6 at all tested flow rates, regardless of different flow rates and COV in this study. In contrast, the effective sweep efficiency was observed to increase with higher COV at the lower flow rate, while that trend became the opposite at the higher flow rate. Similarly, the residual saturation of the nonwetting fluid was largest at COV = 0 for the lower flow rate, but it was the opposite for the higher flow rate case. However, the Minkowski functionals for the boundary length and connectedness of the nonwetting fluid remained quite constant during repetitive fluid flow. Implications of the study results for porous media-compressed air energy storage (PM-CAES) are discussed as a complementary analysis at the end of this manuscript.Supplementary material: Figures S1 and S2 https://doi.org/10.6084/m9.figshare.c.5276814.Thematic collection: This article is part of the Energy Geoscience Series collection available at: https://www.lyellcollection.org/cc/energy-geoscience-series


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Jun Jie Liu ◽  
Hua Zhang ◽  
S. C. Yao ◽  
Yubai Li

Compared to single-phase heat transfer, two-phase microchannel heat sinks utilize latent heat to reduce the needed flow rate and to maintain a rather uniform temperature close to the boiling temperature. The challenge in the application of cooling for electronic chips is the necessity of modeling a large number of microchannels using large number of meshes and extensive computation time. In the present study, a modified porous media method modeling of two-phase flow in microchannels is performed. Compared with conjugate method, which considers individual channels and walls, it saves computation effort and provides a more convenient means to perform optimization of channel geometry. The porous media simulation is applied to a real chip. The channels of high heat load will have higher qualities, larger flow resistances, and lower flow rates. At a constant available pressure drop over the channels, the low heat load channels show much higher mass flow rates than needed. To avoid this flow maldistribution, the channel widths on a chip are adjusted to ensure that the exit qualities and mass flow rate of channels are more uniform. As a result, the total flow rate on the chip is drastically reduced, and the temperature gradient is also minimized. However, it only gives a relatively small reduction on the maximum surface temperature of chip.


2019 ◽  
Vol 21 (27) ◽  
pp. 14605-14611 ◽  
Author(s):  
R. Moosavi ◽  
A. Kumar ◽  
A. De Wit ◽  
M. Schröter

At low flow rates, the precipitate forming at the miscible interface between two reactive solutions guides the evolution of the flow field.


2019 ◽  
Vol 9 (10) ◽  
pp. 2131
Author(s):  
Clive B Beggs ◽  
Simon J Shepherd ◽  
Pietro Cecconi ◽  
Maria Marcella Lagana

The cerebrospinal fluid (CSF) pulse in the Aqueduct of Sylvius (aCSF pulse) is often used to evaluate structural changes in the brain. Here we present a novel application of the general linear model (GLM) to predict the motion of the aCSF pulse. MR venography was performed on 13 healthy adults (9 female and 4 males—mean age = 33.2 years). Flow data was acquired from the arterial, venous and CSF vessels in the neck (C2/C3 level) and from the AoS. Regression analysis was undertaken to predict the motion of the aCSF pulse using the cervical flow rates as predictor variables. The relative contribution of these variables to predicting aCSF flow rate was assessed using a relative weights method, coupled with an ANOVA. Analysis revealed that the aCSF pulse could be accurately predicted (mean (SD) adjusted r2 = 0.794 (0.184)) using the GLM (p < 0.01). Venous flow rate in the neck was the strongest predictor of aCSF pulse (p = 0.001). In healthy individuals, the motion of the aCSF pulse can be predicted using the GLM. This indicates that the intracranial fluidic system has broadly linear characteristics. Venous flow in the neck is the strongest predictor of the aCSF pulse.


2019 ◽  
Vol 827 ◽  
pp. 252-257
Author(s):  
George Karalis ◽  
Christos Mytafides ◽  
Anastasia Polymerou ◽  
Kyriaki Tsirka ◽  
Lazaros Tzounis ◽  
...  

This work is concerned with the study of the strength of nanocoated reinforcing fibers. In more detail, glass fibers were coated with an efficient thermoelectric (TE) ink in order to create multifunctional reinforcing fibers for advanced composite structural applications. The main scope is to evaluate the fracture properties of the TE-enabled hierarchical glass fibers. The hybrid nanocrystal TE ink was synthesized via a solvothermal reaction and further fully characterized in coating form. The morphology and wetting properties of the TE ink deposition onto glass fibers were evaluated via SEM and contact angle measurements. Enhanced values by 19.4% in tensile strength for the coated glass fibers compared to the reference are being reported, measured at single fiber level. The evaluated multifunctional glass fiber strength will be utilised during ongoing research for the interfacial shear strength determination.


Author(s):  
Hua Zhang ◽  
Jun Jie Liu ◽  
Yubai Li ◽  
S. C. Yao

Compared to single phase heat transfer, two-phase micro-channel heat sinks utilize latent heat to reduce the needed flow rate and maintaining a rather uniform temperature close to the boiling temperature. The challenge in the application of cooling for electronic chips is the necessity of modeling a large number of micro channels using large number of meshes and extensive computation time. In the present study, a modified porous media method modeling of two phase flow in micro-channels is performed. Compared with conjugate CFD method, it saves computation effort and provides a more convenient means to perform optimization of channel geometry. The porous media simulation is applied to a real chip. The channels of high heat load will have higher qualities, larger flow resistances and lower flow rates. At a constant available pressure drop over the channels, the low heat load channels show much higher mass flow rates than needed. To avoid this flow mal-distribution, the channel widths on a chip are adjusted to ensure the exit qualities and mass flow rate of channels are more uniform. As a result, the total flow rate on the chip is drastically reduced, and the temperature gradient is also minimized. However, it only gives a relatively small reduction on the maximum surface temperature of chip.


1964 ◽  
Vol 4 (02) ◽  
pp. 124-132 ◽  
Author(s):  
R.A. Greenkorn ◽  
C.R. Johnson ◽  
L.K. Shallenberger

Abstract This paper describes a study, based on core data, of the directional permeability of a sandstone reservoir. Directional air permeabilities are explained and correlated with lithology by the tensor theory of permeability, which is extended to the more general case of heterogeneous anisotropic porous media. In this case, the permeability tensor is made up of two components:anisotropy (variation around a point) which correlates with bedding, andheterogeneity (variation from point- to-point) which correlates with grain size. Introduction Previous studies of directional permeability, have concerned themselves only with anisotropy at a point, rather than with both point-to-point differences and local anisotropies. In this paper, we present the existing tensor theory of permeability for anisotropic porous media and then extend it to the more general case of heterogeneous anisotropic porous media. The laboratory measurements of directional permeability are explained in view of this extended theory and the data are discussed in terms of the lithologic factors that correlate with it. The results show what the heterogeneity and anisotropy of the reservoir element are, and that the directional permeability correlates with lithology. Data used in this paper are measurements of air permeability in eight directions, spaced at 45 intervals, on 142 2-in. vertical plugs from 30 cores. The core data are meaningful in terms of directional permeability because the cores were oriented to within 45 during drilling and coring. Although we initially thought that only 60 per cent of the core material was reliable, subsequent study showed that almost all of it was reliably oriented. After determining the air permeabilities, the data were reduced to three independent variables for each plug: the major and minor permeability axes, and the direction of the major axis. These were obtained by converting the permeability data to the reciprocal square root of permeability and fitting the transformed data with ellipses according to the tensor theory of permeability. The point-to-point areal variation of the minimum permeability axis is related to grain size. The direction of the permeability axes, where the major axis exceeds the minor axis by at least 5 per cent (measured variation is about 4 per cent), correlates with the bedding. The permeability tensor used in this study must be considered as the sum of a scalar and a tensor, with the scalar being the minor axis permeability as a function of position, and the tensor the directional effect, which is additive permeability over the minor axis. In this case, the point-to-point variation or heterogeneity (minor axis) is substantially larger than the variation at a point or anisotropy. It may be important that this separation of "directional permeabilities" be recognized when considering migration of fluids due to permeability variation. Local migration may be due to anisotropy and point-to-point migration may be due to heterogeneity, but the direction and magnitude of these may not be the same. Furthermore, in truly heterogeneous systems, one would expect that anisotropy would be the smaller of the two effects. THEORY TENSOR THEORY OF PERMEABILITY FOR ANISOTROPIC POROUS MEDIA Darcy's law for flow in porous media in its usual form is where q is the flow rate vector, k is the permeability, mu is the viscosity, V is the vector differential operator, and p is the pressure. SPEJ P. 124ˆ


1988 ◽  
Vol 53 (4) ◽  
pp. 788-806
Author(s):  
Miloslav Hošťálek ◽  
Jiří Výborný ◽  
František Madron

Steady state hydraulic calculation has been described of an extensive pipeline network based on a new graph algorithm for setting up and decomposition of balance equations of the model. The parameters of the model are characteristics of individual sections of the network (pumps, pipes, and heat exchangers with armatures). In case of sections with controlled flow rate (variable characteristic), or sections with measured flow rate, the flow rates are direct inputs. The interactions of the network with the surroundings are accounted for by appropriate sources and sinks of individual nodes. The result of the calculation is the knowledge of all flow rates and pressure losses in the network. Automatic generation of the model equations utilizes an efficient (vector) fixing of the network topology and predominantly logical, not numerical operations based on the graph theory. The calculation proper utilizes a modification of the model by the method of linearization of characteristics, while the properties of the modified set of equations permit further decrease of the requirements on the computer. The described approach is suitable for the solution of practical problems even on lower category personal computers. The calculations are illustrated on an example of a simple network with uncontrolled and controlled flow rates of cooling water while one of the sections of the network is also a gravitational return flow of the cooling water.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Kaan Erdem ◽  
Vahid Ebrahimpour Ahmadi ◽  
Ali Kosar ◽  
Lütfullah Kuddusi

Label-free, size-dependent cell-sorting applications based on inertial focusing phenomena have attracted much interest during the last decade. The separation capability heavily depends on the precision of microparticle focusing. In this study, five-loop spiral microchannels with a height of 90 µm and a width of 500 µm are introduced. Unlike their original spiral counterparts, these channels have elliptic configurations of varying initial aspect ratios, namely major axis to minor axis ratios of 3:2, 11:9, 9:11, and 2:3. Accordingly, the curvature of these configurations increases in a curvilinear manner through the channel. The effects of the alternating curvature and channel Reynolds number on the focusing of fluorescent microparticles with sizes of 10 and 20 µm in the prepared suspensions were investigated. At volumetric flow rates between 0.5 and 3.5 mL/min (allowing separation), each channel was tested to collect samples at the designated outlets. Then, these samples were analyzed by counting the particles. These curved channels were capable of separating 20 and 10 µm particles with total yields up to approximately 95% and 90%, respectively. The results exhibited that the level of enrichment and the focusing behavior of the proposed configurations are promising compared to the existing microfluidic channel configurations.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


Sign in / Sign up

Export Citation Format

Share Document