scholarly journals In Situ Assessment of 5G NR Massive MIMO Base Station Exposure in a Commercial Network in Bern, Switzerland

2021 ◽  
Vol 11 (8) ◽  
pp. 3592
Author(s):  
Sam Aerts ◽  
Kenneth Deprez ◽  
Davide Colombi ◽  
Matthias Van den Bossche ◽  
Leen Verloock ◽  
...  

This paper describes the assessment of radiofrequency (RF) electromagnetic field (EMF) exposure from fifth generation (5G) new radio (NR) base stations in a commercial NR network in Bern, Switzerland. During the measurement campaign, four base station sites were investigated and the exposure induced by the NR massive multiple-input-multiple-output (MaMIMO) antennas was assessed at 22 positions, at distances from the base station between 30 m and 410 m. The NR base stations operated at 3.6 GHz and used codebook-based beamforming. While the actual field levels without inducing downlink traffic were very low (<0.05 V/m) due to a low traffic load and low antenna input powers of up to 8 W, setting up a maximum downlink traffic stream towards user equipment resulted in a time-averaged exposure level of up to 0.4 V/m, whereas the maximum extrapolated exposure level reached 0.6 V/m. Extrapolated to an antenna input power of 200 W, values of 4.3 V/m and 4.9 V/m, respectively, were obtained, which amount to 0.5–0.6% of the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). In Bern, it was found that the impact of the NR network on the total environmental RF exposure was very limited; with maximum downlink, it contributed 2% on average. Finally, it was also concluded that extrapolation to the maximum exposure level can be done without prior knowledge of the radiation patterns, directly based on the measurement of the Physical Downlink Shared Channel (PDSCH) resource elements.

2015 ◽  
Vol 18 (3) ◽  
pp. 92-101
Author(s):  
Kha Hoang Ha ◽  
Long Dinh Nguyen ◽  
Tuan Hong Do

This paper is concerned with the joint linear precoder design problem for the multiuser multiple-input multiple-output (MIMO) heterogeneous networks (HetNets) in which multiple femto base stations (FBSs) coexist with a macro base station (MBS). To tackle the inter-user interference in the macrocell, we exploit the blockdiagonalization scheme and then use the convex optimization to maximize the sum rate of the macrocell. The FBS transmission strategy is to maximize the sum-rate of femtocells subject to the transmitted power constraints per FBS and restrictions on the cross-tier interference to macro-users (MUs). Such a design problem is typically nonconvex, and, thus, challenging to find the FBS precoders. We reformulate the design problem of the FBS precoders as a d.c. (difference of convex functions) programming, and develop an efficient iterative algorithm to obtain the optimal precoders. Numerical simulation results show that the proposed algorithm outperforms the other methods in terms of the total sum-rate of the HetNet.


Author(s):  
Insha Ishteyaq ◽  
Khalid Muzaffar

Abstract The in-depth exploration in the future 5G technology symbolizes a revolution in technology for antenna designers to encounter the all time increasing need as well as demand for higher data rate wireless communications. The paper gives out an exhaustive review of the evolution and characteristics of the 5G spectrum allocations, the MIMO antenna design with regard to mutual coupling reduction techniques and safer user applications. It precisely covers almost all the aspects of 5G which mainly include the types of antenna designs and their performance parameters related to MIMO design. The paper also presents a brief description of massive MIMO technology for base station applications. The main aim of the paper is: (1) to emphasize the frequencies allocated for the 5G including sub-6 Ghz and mm-wave bands; (2) to underline the suitable antenna designs for MIMO applications for mobile devices and base stations; (3) to highlight the mutual coupling effects in MIMO designs and its reduction techniques; (4) to consider the gaps in the literature and the challenges for reducing SAR effects for the safety of the users. This review paper has been an attempt to explore the evolution of 5G bands and antenna designs for 5G applications, comparison based on the literature, and the techniques implemented for enhancing the MIMO antenna performances.


2020 ◽  
Vol 10 (20) ◽  
pp. 7261
Author(s):  
Wei Zhao ◽  
Wen-Hsing Kuo

With the development of 5G communication, massive multiple input multiple output (MIMO) technology is getting more and more attention. Massive MIMO uses a large amount of simultaneous transmitting and receiving antennas to reduce power consumption and raise the level of transmission quality. Meanwhile, the diversification of user equipment (UE) in the 5G environment also makes heterogeneous networks (HetNets) more prevalent. HetNets allow UE of different network standards to access small cells, while the base stations of small cells access a macro base station (BS) to form a multihop wireless heterogeneous backhaul network. However, how to effectively combine these two technologies by efficiently allocating the antennas of each BS during the route construction process of heterogeneous wireless backhaul networks is still an important issue that is yet to be solved. In this paper, we propose an algorithm called preallocated sequential routing (PSR). Based on the links’ channel conditions and the available antennas and location of BSs, it builds a wireless heterogeneous network backhaul topology and adjusts each link’s transmitting and receiving antennas to maximize total utility. Simulation results showed that the proposed algorithm significantly improved the overall utility and the utility of the outer area of heterogeneous networks.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hyunwook Yang ◽  
Seungwon Choi

We propose a novel precoding algorithm that is a zero-forcing (ZF) method combined with adaptive beamforming in the Worldwide Interoperability for Microwave Access (WiMAX) system. In a Multiuser Multiple-Input Multiple-Output (MU-MIMO) system, ZF is used to eliminate the Multiple Access Interference (MAI) in order to allow several users to share a common resource. The adaptive beamforming algorithm is used to achieve the desired SNR gain. The experimental system consists of a WiMAX base station that has 2 MIMO elements, each of which is composed of three-array antennas and two mobile terminals, each of which has a single antenna. Through computer simulations, we verified that the proposed method outperforms the conventional ZF method by at least 2.4 dB when the BER is 0.1%, or 1.7 dB when the FER is 1%, in terms of the SNR. Through a hardware implementation of the proposed method, we verified the feasibility of the proposed method for realizing a practical WiMAX base station to utilize the channel resources as efficiently as possible.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 732
Author(s):  
Avner Elgam ◽  
Yael Balal ◽  
Yosef Pinhasi

Many communication systems are based on the Multiple Input, Multiple Output (MIMO) scheme, and Orthogonal Space–time Block Transmit diversity Coding (OSTBC), combined with Maximal Ratio Receive Combining (MRRC), to create an optimal diversity system. A system with optimal diversity fixes and optimizes the channel’s effects under multi-path and Rayleigh fading with maximum energy efficiency; however, the challenge does not end with dealing with the channel destruction of the multi-path impacts. Susceptibility to interference is a significant vulnerability in future wireless mobile networks. The 5th Generation New Radio (5G-NR) technologies bring hundreds of small cells and pieces of User Equipment (UE) per indoor or outdoor local area scenario under a specific Long Term Evolution (LTE)-based station (e-NodeB), or under 5G-NR base-station (g-NodeB). It is necessary to study issues that deal with many interference signals, and smart jammers from advanced communication equipment cause deterioration in the links between the UE, the small cells, and the NodeB. In this paper, we study and present the significant impact and performances of 2×2 Alamouti Phase-Shift Keying (PSK) modulation techniques in the presence of an interferer and a smart jammer. The destructive effects affecting the MIMO array and the advanced diversity technique without closed-loop MIMO are analyzed. The performance is evaluated in terms of Bit Error Rate (BER) vs. Signal to Interference Ratio (SIR). In addition, we proved the impairment of the orthogonal spectrum assumption mathematically.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


2022 ◽  
Vol 9 ◽  
Author(s):  
Bo Xu ◽  
David Anguiano Sanjurjo ◽  
Davide Colombi ◽  
Christer Törnevik

International radio frequency (RF) electromagnetic field (EMF) exposure assessment standards and regulatory bodies have developed methods and specified requirements to assess the actual maximum RF EMF exposure from radio base stations enabling massive multiple-input multiple-output (MIMO) and beamforming. Such techniques are based on the applications of power reduction factors (PRFs), which lead to more realistic, albeit conservative, exposure assessments. In this study, the actual maximum EMF exposure and the corresponding PRFs are computed for a millimeter-wave radio base station array antenna. The computed incident power densities based on near-field and far-field approaches are derived using a Monte Carlo analysis. The results show that the actual maximum exposure is well below the theoretical maximum, and the PRFs similar to those applicable for massive MIMO radio base stations operating below 6 GHz are also applicable for millimeter-wave frequencies. Despite the very low power levels that currently characterize millimeter-wave radio base stations, using the far-field approach can also guarantee the conservativeness of the PRFs used to assess the actual maximum exposure close to the antenna.


Author(s):  
Walder de Jesús Canova García

Resumen El creciente número de estaciones base de telefonía móvil celular alrededor de sectores residenciales o tránsito de personas, causa preocupación en la comunidad sobre si la radiación de campos electromagnéticos puedan causar riesgos en la salud. Internacionalmente existen estándares que establecen límites a las diversas fuentes de campos electromagnéticos para garantizar que se minimizan los riesgos en la salud. Cada país adopta dentro de su legislación algún estándar o recomendación y exige su cumplimiento a los operadores de estaciones de telecomunicaciones, por ejemplo en Colombia rige el decreto 195 de 2005. El artículo presenta una evaluación, basados en mediciones técnicas en el 2010, para obtener los niveles de exposición a campos electromagnéticos generados por las antenas instaladas en las estaciones base de telefonía móvil. Luego aparece el procedimiento general de mediciones, donde incluye el plan ejecutorial de mediciones, la configuración de la instrumentación y la caracterización de los lugares y puntos de medición. Por último, los resultados medidos en algunos lugares, donde las antenas de transmisión cumplían con la normativa adoptada en Colombia. Palabras Clave: Exposición a campos Electromagnéticos, Estaciones base de Telefonía móvil celular, Mediciones de banda angosta.   Abstract The growth of installations of transmitting antennas on base stations surrounding residential spaces or person traffic causes concerns in the community, about whether the radiation of electromagnetic fields of transmitting antennas in mobile base station can generate health risk. Over the world, there are standards that establish maximum levels permitted to different electromagnetic field sources to accomplish security ranges for health risks. Each country adopts in their legislation some international standard and requires to telecommunication operators stations for its compliance. In Colombian, the decree 195 of 2005 is still valid. This article shows an assessment, based on technical measurements developed in 2010, to acquire the electromagnetic field exposure levels generated by transmitting antennas installed on Mobile Base Station. This assessment includes the measurement system procedure: plan of measurement, instrumental configuration, and characterization of measurement places. Finally, here presents the measured results in some places, which exposure levels satisfied the adopted legislation in Colombia. Keywords: Electromagnetic Field Exposure, Mobile Base Stations, Narrowband Measurement.


Author(s):  
Hong Son Vu ◽  
Kien Truong ◽  
Minh Thuy Le

<p>Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced.</p>


Author(s):  
Yusnita Rahayu ◽  
Indah Permata Sari ◽  
Dara Incam Ramadhan ◽  
Razali Ngah

This article presented a millimeter wave antenna which operated at 38 GHz for 5G mobile base station. The MIMO (Multiple Input Multiple Output) antenna consisted of 1x10 linear array configurations. The proposed antenna’s size was 88 x 98 mm^2  and printed on 1.575 mm-thick Rogers Duroid 5880 subsrate with dielectric constant of ε_r= 2.2 and loss tangent (tanδ) of 0.0009. The antenna array covered along the azimuth plane to provide the coverage to the users in omnidirection. The simulated results showed that the single element antenna had the reflection coefficient (S11) of -59 dB, less than -10 dB in the frequency range of 35.5 - 39.6 GHz. More than 4.1 GHz of impedance bandwidth was obtained. The gain of the antenna linear array was 17.8 dBi while the suppression of the side lobes was -2.7 dB.  It showed a high array gain throughout the impedance bandwidth with overall of VSWR were below 1.0646. It designed using CST microwave studio.


Sign in / Sign up

Export Citation Format

Share Document