scholarly journals Mycosporine-Like Amino Acids from Red Macroalgae: UV-Photoprotectors with Potential Cosmeceutical Applications

2021 ◽  
Vol 11 (11) ◽  
pp. 5112
Author(s):  
Julia Vega ◽  
Geniane Schneider ◽  
Bruna R. Moreira ◽  
Carolina Herrera ◽  
José Bonomi-Barufi ◽  
...  

Macroalgae belong to a diverse group of organisms that could be exploited for biomolecule application. Among the biocompounds found in this group, mycosporine-like amino acids (MAAs) are highlighted mainly due to their photoprotection, antioxidant properties, and high photo and thermo-stability, which are attractive characteristics for the development of cosmeceutical products. Therefore, here we revise published data about MAAs, including their biosynthesis, biomass production, extraction, characterization, identification, purification, and bioactivities. MAAs can be found in many algae species, but the highest concentrations are found in red macroalgae, mainly in the order Bangiales, as Porphyra spp. In addition to the species, the content of MAAs can vary depending on environmental factors, of which solar radiation and nitrogen availability are the most influential. MAAs can confer photoprotection due to their capacity to absorb ultraviolet radiation or reduce the impact of free radicals on cells, among other properties. To extract these compounds, different approaches can be used. The efficiency of these methods can be evaluated with characterization and identification using high performance liquid chromatography (HPLC), associated with other apparatus such as mass spectrometry (MS) and nuclear magnetic resonance (NMR). Therefore, the data presented in this review allow a broad comprehension of MAAs and show perspectives for their inclusion in cosmeceutical products.

Author(s):  
Agnieszka Fulczyk ◽  
Eliza Łata ◽  
Miloš Dolnik ◽  
Ewa Talik ◽  
Teresa Kowalska ◽  
...  

AbstractThis is our sixth consecutive study carried out in an order to collect an experimental evidence on the impact of heavy water (D2O) on spontaneous peptidization of the proteinogenic α-amino acids and this time it is L-histidine (L-His). Scientists have not yet achieved a full consensus regarding the source of this very important amino acid in human and mammalian tissues, and on this particular question rather contradictory answers in form of experimental results are produced, equally supporting its exogenous and endogenous origin. Although this issue still remains unsolved, for practical demands of life sciences the two UN agencies, FAO and WHO, have both tentatively accepted that L-His is an exogenous α-amino acid. As analytical techniques, in our studies we employed high-performance liquid chromatography with the diode array detection (HPLC–DAD), mass spectrometry (MS), and scanning electron microscopy (SEM). Spontaneous peptidization of L-His dissolved in methanol + H2O, 7:3 (v/v) was carried out at 22 ± 0.5 °C in the darkness for a relatively long period of 314 h, and its progress was chromatographically checked by targeting concentration of the L-His monomer in the 12-min intervals. This investigation revealed alternating yet non-periodic concentration changes, indicating changeable formation and hydrolytic decay of the L-His-derived oligopeptides in the function of time, and a fast net concentration fall of the L-His monomer (witnessing to quite vigorous peptidization). Moreover, the MS results confirmed formation of the relatively high oligopeptides, falling within the range of two or more dozen L-His monomer units. Impact of D2O on peptidization of L-His was traced with use of MS and SEM for the L-His samples dissolved in aqueous methanol solvents containing 5, 10, 20, and 30% D2O, and also in pure D2O. Similar to the results earlier presented for five other proteinogenic α-amino acids, heavy water exerts a powerful inhibitory effect on spontaneous peptidization of L-His, equally perceptible when assessed with aid of mass spectrometry (with the mass spectra in the first instance playing the role of quasi-quantitative fingerprints), and based on purely qualitative micrographs derived with use of SEM.


Author(s):  
Julian Alfke ◽  
Uta Kampermann ◽  
Svetlana Kalinina ◽  
Melanie Esselen

AbstractDietary polyphenols like epigallocatechin-3-gallate (EGCG)—which represents the most abundant flavan-3-ol in green tea—are subject of several studies regarding their bioactivity and health-related properties. On many occasions, cell culture or in vitro experiments form the basis of published data. Although the stability of these compounds is observed to be low, many reported effects are directly related to the parent compounds whereas the impact of EGCG degradation and autoxidation products is not yet understood and merely studied. EGCG autoxidation products like its dimers theasinensin A and D, “P2” and oolongtheanin are yet to be characterized in the same extent as their parental polyphenol. However, to investigate the bioactivity of autoxidation products—which would minimize the discrepancy between in vitro and in vivo data—isolation and structure elucidation techniques are urgently needed. In this study, a new protocol to acquire the dimers theasinensin A and D as well as oolongtheanin is depicted, including a variety of spectroscopic and quadrupole time-of-flight high-resolution mass spectrometric (qTOF-HRMS) data to characterize and assign these isolates. Through nuclear magnetic resonance (NMR) spectroscopy, polarimetry, and especially circular dichroism (CD) spectroscopy after enzymatic hydrolysis the complementary atropisomeric stereochemistry of the isolated theasinensins is illuminated and elucidated. Lastly, a direct comparison between the isolated EGCG autoxidation products and the monomer itself is carried out regarding their antioxidant properties featuring Trolox equivalent antioxidant capacity (TEAC) values. These findings help to characterize these products regarding their cellular effects and—which is of special interest in the flavonoid group—their redox properties.


Kardiologiia ◽  
2020 ◽  
Vol 60 (3) ◽  
pp. 37-43
Author(s):  
E. O. Korobkova ◽  
M. V. Kozhevnikova ◽  
I. S. Ilgisonis ◽  
G. A. Shakaryants ◽  
S. A. Appolonova ◽  
...  

Objective. To identify biomarkers, which are most specific for patients with metabolic syndrome (MS) using metabolomic profiling.Materials and Methods. Metabolomic profiling of patients with MS and comparison of their profile with the profile of volunteers was performed using high-performance liquid chromatography-mass-spectrometry.Results. The metabolomic profile of MS patients differed in several amino acids, including choline, cysteine, and serine and in the acylcarnitine group (р<0.05 for all comparisons).Conclusion. The metabolites most specific for MS patients were identified. Increased concentrations of a combination of amino acids and carnitines can be considered as possible additional risk factors for cardiovascular diseases.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5580
Author(s):  
Mayya P. Razgonova ◽  
Alexander M. Zakharenko ◽  
Elena I. Gordeeva ◽  
Olesya Yu. Shoeva ◽  
Elena V. Antonova ◽  
...  

The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed.


2009 ◽  
Vol 55 (9) ◽  
pp. 1615-1626 ◽  
Author(s):  
Dennis J Dietzen ◽  
Piero Rinaldo ◽  
Ronald J Whitley ◽  
William J Rhead ◽  
W Harry Hannon ◽  
...  

Abstract Background: Almost all newborns in the US are screened at birth for multiple inborn errors of metabolism using tandem mass spectrometry. Screening tests are designed to be sufficiently sensitive so that cases are not missed. The NACB recognized a need for standard guidelines for laboratory confirmation of a positive newborn screen such that all babies would benefit from equal and optimal follow-up by confirmatory testing. Methods: A committee was formed to review available data pertaining to confirmatory testing. The committee evaluated previously published guidelines, published methodological and clinical studies, clinical case reports, and expert opinion to support optimal confirmatory testing. Grading was based on guidelines adopted from criteria derived from the US Preventive Services Task Force and on the strength of recommendations and the quality of the evidence. Three primary methods of analyte measurement were evaluated for confirmatory testing including measurement of amino acids, organic acids, and carnitine esters. The committee graded the evidence for diagnostic utility of each test for the screened conditions. Results: Ample data and experience were available to make strong recommendations for the practice of analyzing amino acids, organic acids, and acylcarnitines. Likewise, strong recommendations were made for the follow-up test menu for many disorders, particularly those with highest prevalence. Fewer data exist to determine the impact of newborn screening on patient outcomes in all but a few disorders. The guidelines also provide an assessment of developing technology that will fuel a refinement of current practice and ultimate expansion of the diseases detectable by tandem mass spectrometry. Conclusions: Guidelines are provided for optimal follow-up testing for positive newborn screens using tandem mass spectrometry. The committee regards these tests as reliable and currently optimal for follow-up testing. .


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1262 ◽  
Author(s):  
Anna Oniszczuk ◽  
Kamila Kasprzak ◽  
Agnieszka Wójtowicz ◽  
Tomasz Oniszczuk ◽  
Marta Olech

Buckwheat is a generous source of phenolic compounds, vitamins and essential amino acids. This paper discusses the procedure of obtaining innovative gluten-free, precooked pastas from roasted buckwheat grains flour, a fertile source of natural antioxidants, among them, phenolic acids. The authors also determined the effect of the extruder screw speed and the level of moisture content in the raw material on the quantity of free phenolic acids. The qualitative and quantitative analysis of phenolic acids in pasta was carried out using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The chromatographic method was validated. For extracts with the highest total content of free phenolic acids and unprocessed flour from roasted buckwheat grain, the TLC-DPPH test was also performed to determine the antioxidant properties of the tested pasta. The level of moisture in the raw material had an impact on the content of phenolic acids. All pastas made from buckwheat flour moistened up to 32% exhibited a higher total content of free phenolic acids than other mixes moistened to 30 and 34% of water.


Sign in / Sign up

Export Citation Format

Share Document