scholarly journals Anomaly-Based Intrusion Detection Systems in IoT Using Deep Learning: A Systematic Literature Review

2021 ◽  
Vol 11 (18) ◽  
pp. 8383 ◽  
Author(s):  
Muaadh A. Alsoufi ◽  
Shukor Razak ◽  
Maheyzah Md Siraj ◽  
Ibtehal Nafea ◽  
Fuad A. Ghaleb ◽  
...  

The Internet of Things (IoT) concept has emerged to improve people’s lives by providing a wide range of smart and connected devices and applications in several domains, such as green IoT-based agriculture, smart farming, smart homes, smart transportation, smart health, smart grid, smart cities, and smart environment. However, IoT devices are at risk of cyber attacks. The use of deep learning techniques has been adequately adopted by researchers as a solution in securing the IoT environment. Deep learning has also successfully been implemented in various fields, proving its superiority in tackling intrusion detection attacks. Due to the limitation of signature-based detection for unknown attacks, the anomaly-based Intrusion Detection System (IDS) gains advantages to detect zero-day attacks. In this paper, a systematic literature review (SLR) is presented to analyze the existing published literature regarding anomaly-based intrusion detection, using deep learning techniques in securing IoT environments. Data from the published studies were retrieved from five databases (IEEE Xplore, Scopus, Web of Science, Science Direct, and MDPI). Out of 2116 identified records, 26 relevant studies were selected to answer the research questions. This review has explored seven deep learning techniques practiced in IoT security, and the results showed their effectiveness in dealing with security challenges in the IoT ecosystem. It is also found that supervised deep learning techniques offer better performance, compared to unsupervised and semi-supervised learning. This analysis provides an insight into how the use of data types and learning methods will affect the performance of deep learning techniques for further contribution to enhancing a novel model for anomaly intrusion detection and prediction.

Author(s):  
Laiby Thomas ◽  
Subramanya Bhat

Purpose: The authors attempt to examine the work done in the area of Intrusion Detection System in IoT utilizing Machine Learning/Deep Learning technique and various accessible datasets for IoT security in this review of literature. Methodology: The papers in this study were published between 2014 and 2021 and dealt with the use of IDS in IoT security. Various databases such as IEEE, Wiley, Science Direct, MDPI, and others were searched for this purpose, and shortlisted articles used Machine Learning and Deep Learning techniques to handle various IoT vulnerabilities. Findings/Result: In the past few years, the IDS has grown in popularity as a result of their robustness. The main idea behind intrusion detection systems is to detect intruders in a given region. An intruder is a host that tries to connect to other nodes without permission in the world of the Internet of Things. In the field of IDS, there is a research gap. Different ML/DL techniques are used for IDS in IoT. But it does not properly deal with complexity issues. Also, these techniques are limited to some attacks, and it does not provide high accuracy. Originality: A review had been executed from various research works available from online databases and based on the survey derived a structure for the future study. Paper Type: Literature Review.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1977 ◽  
Author(s):  
Geethapriya Thamilarasu ◽  
Shiven Chawla

Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end users, increases the number of data breaches and identity theft, drives up the costs and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to provide effective security and defense. In this paper, we develop an intelligent intrusion-detection system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect malicious traffic in IoT networks. The detection solution provides security as a service and facilitates interoperability between various network communication protocols used in IoT. We evaluate our proposed detection framework using both real-network traces for providing a proof of concept, and using simulation for providing evidence of its scalability. Our experimental results confirm that the proposed intrusion-detection system can detect real-world intrusions effectively.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 518 ◽  
Author(s):  
Hafsa Khalid ◽  
Muzammil Hussain ◽  
Mohammed A. Al Ghamdi ◽  
Tayyaba Khalid ◽  
Khadija Khalid ◽  
...  

The purpose of this research was to provide a “systematic literature review” of knee bone reports that are obtained by MRI, CT scans, and X-rays by using deep learning and machine learning techniques by comparing different approaches—to perform a comprehensive study on the deep learning and machine learning methodologies to diagnose knee bone diseases by detecting symptoms from X-ray, CT scan, and MRI images. This study will help those researchers who want to conduct research in the knee bone field. A comparative systematic literature review was conducted for the accomplishment of our work. A total of 32 papers were reviewed in this research. Six papers consist of X-rays of knee bone with deep learning methodologies, five papers cover the MRI of knee bone using deep learning approaches, and another five papers cover CT scans of knee bone with deep learning techniques. Another 16 papers cover the machine learning techniques for evaluating CT scans, X-rays, and MRIs of knee bone. This research compares the deep learning methodologies for CT scan, MRI, and X-ray reports on knee bone, comparing the accuracy of each technique, which can be used for future development. In the future, this research will be enhanced by comparing X-ray, CT-scan, and MRI reports of knee bone with information retrieval and big data techniques. The results show that deep learning techniques are best for X-ray, MRI, and CT scan images of the knee bone to diagnose diseases.


2022 ◽  
Vol 9 ◽  
Author(s):  
M. Akshay Kumaar ◽  
Duraimurugan Samiayya ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang ◽  
...  

The unbounded increase in network traffic and user data has made it difficult for network intrusion detection systems to be abreast and perform well. Intrusion Systems are crucial in e-healthcare since the patients' medical records should be kept highly secure, confidential, and accurate. Any change in the actual patient data can lead to errors in the diagnosis and treatment. Most of the existing artificial intelligence-based systems are trained on outdated intrusion detection repositories, which can produce more false positives and require retraining the algorithm from scratch to support new attacks. These processes also make it challenging to secure patient records in medical systems as the intrusion detection mechanisms can become frequently obsolete. This paper proposes a hybrid framework using Deep Learning named “ImmuneNet” to recognize the latest intrusion attacks and defend healthcare data. The proposed framework uses multiple feature engineering processes, oversampling methods to improve class balance, and hyper-parameter optimization techniques to achieve high accuracy and performance. The architecture contains <1 million parameters, making it lightweight, fast, and IoT-friendly, suitable for deploying the IDS on medical devices and healthcare systems. The performance of ImmuneNet was benchmarked against several other machine learning algorithms on the Canadian Institute for Cybersecurity's Intrusion Detection System 2017, 2018, and Bell DNS 2021 datasets which contain extensive real-time and latest cyber attack data. Out of all the experiments, ImmuneNet performed the best on the CIC Bell DNS 2021 dataset with about 99.19% accuracy, 99.22% precision, 99.19% recall, and 99.2% ROC-AUC scores, which are comparatively better and up-to-date than other existing approaches in classifying between requests that are normal, intrusion, and other cyber attacks.


At present situation network communication is at high risk for external and internal attacks due to large number of applications in various fields. The network traffic can be monitored to determine abnormality for software or hardware security mechanism in the network using Intrusion Detection System (IDS). As attackers always change their techniques of attack and find alternative attack methods, IDS must also evolve in response by adopting more sophisticated methods of detection .The huge growth in the data and the significant advances in computer hardware technologies resulted in the new studies existence in the deep learning field, including ID. Deep Learning (DL) is a subgroup of Machine Learning (ML) which is hinged on data description. The new model based on deep learning is presented in this research work to activate operation of IDS from modern networks. Model depicts combination of deep learning and machine learning, having capacity of wide range accurate analysis of traffic network. The new approach proposes non-symmetric deep auto encoder (NDAE) for learning the features in unsupervised manner. Furthermore, classification model is constructed using stacked NDAEs for classification. The performance is evaluated using a network intrusion detection analysis dataset, particularly the WSN Trace dataset. The contribution work is to implement advanced deep learning algorithm consists IDS use, which are efficient in taking instant measures in order to stop or minimize the malicious actions


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sagar Pande ◽  
Aditya Khamparia ◽  
Deepak Gupta

Purpose One of the important key components of health care–based system is a reliable intrusion detection system. Traditional techniques are not adequate to handle complex data. Also, the diversified intrusion techniques cannot meet current network requirements. Not only the data is getting increased but also the attacks are increasing very rapidly. Deep learning and machine learning techniques are very trending in the area of research in the area of network security. A lot of work has been done in this area by still evolutionary algorithms along with machine learning is very rarely explored. The purpose of this study is to provide novel deep learning framework for the detection of attacks. Design/methodology/approach In this paper, novel deep learning is the framework is proposed for the detection of attacks. Also, a comparison of machine learning and deep learning algorithms is provided. Findings The obtained results are more than 99% for both the data sets. Research limitations/implications The diversified intrusion techniques cannot meet current network requirements. Practical implications The data is getting increased but also the attacks are increasing very rapidly. Social implications Deep learning and machine learning techniques are very trending in the area of research in the area of network security. Originality/value Novel deep learning is the framework is proposed for the detection of attacks.


Sign in / Sign up

Export Citation Format

Share Document