scholarly journals Dispersion of Carbon Nanotubes with Different Types of Superplasticizer as a Dispersing Agent for Self-Sensing Cementitious Materials

2021 ◽  
Vol 11 (18) ◽  
pp. 8452
Author(s):  
Pedro de Almeida Carísio ◽  
Yasmim Gabriela dos Santos Mendonça ◽  
Carlos Fernando Teodósio Soares ◽  
Oscar Aurelio Mendoza Reales ◽  
Eduardo de Moraes Rego Fairbairn ◽  
...  

Due to their exceptional electrical properties, carbon nanotubes (CNTs) can be applied as conductive fillers to develop self-sensing cement-based matrices. In order to obtain an adequate self-sensing response, CNTs must be evenly dispersed through the cement matrix in a volume sufficient enough to create an electric percolation network. This is challenged by the difficulty of dispersing CNTs; therefore, there is a demand for an efficient dispersing agent that can be filled by superplasticiezers, which are products of known compatibility with cement and high availability. This research explores the use of four commercial superplasticizers available in Brazil, both naphthalene and ether polycarboxylate-based, as dispersing agents for CNTs in water. Ultrasonic energy was applied to aqueous solutions containing CNTs and superplasticizers. UV–Vis spectroscopy and ξ-potential measurements were used to investigate which superplasticizer was more effective to disperse the CNTs. Cement pastes were produced with the CNT dispersions and their electrical resistivity was measured. It was found that only superplasticizers without aliphatic groups in their structure were capable of dispersing CNTs in water. It was concluded that second-generation naphthalene-based superplasticizers were more efficient dispersing agents for CNTs than third-generation ether polycarboxylate-based ones for self-sensing applications.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Oscar A. Mendoza Reales ◽  
Caterin Ocampo ◽  
Yhan Paul Arias Jaramillo ◽  
Juan Carlos Ochoa Botero ◽  
Jorge Hernán Quintero ◽  
...  

Decoupling the individual effects of multiwalled carbon nanotubes (MWCNTs) and surfactants when used as reinforcement materials in cement-based composites is aimed in this study. Powder MWCNTs were dispersed in deionized water using different types of surfactants as chemical dispersing agents and an ultrasonic tip processor. Cement pastes with carbon nanotubes additions of 0.15% by mass of cement were produced in two steps: first, the MWCNT/surfactant dispersions were combined with the mixing water, and then, cement was added and mixed until a homogeneous paste was obtained. Mechanical properties of the pastes cured at 7 days were measured, and their fracture behavior was characterized using the linear elastic finite element analysis. It was found that the reinforcing effect of MWCNT was masked by the negative effect of surfactants in the cement matrix; nevertheless, nanotubes were capable of increasing both stress and strain capacity of the composite by controlling the crack propagation process at the tip of the crack.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4149
Author(s):  
Laura M. Echeverry-Cardona ◽  
Natalia Álzate ◽  
Elisabeth Restrepo-Parra ◽  
Rogelio Ospina ◽  
Jorge H. Quintero-Orozco

This study shows the energy optimization and stabilization in the time of solutions composed of H2O + TX-100 + Multi-Wall Carbon Nanotubes (MWCNTs), used to improve the mechanical properties of Portland cement pastes. For developing this research, sonication energies at 90, 190, 290, 340, 390, 440, 490 and 590 J/g are applied to a colloidal substance (MWCNTs/TX-100 + H2O) with a molarity of 10 mM. Raman spectroscopy analyses showed that, for energies greater than 440 J/g, there are ruptures and fragmentation of the MWCNTs; meanwhile at energies below 390 J/g, better dispersions are obtained. The stability of the dispersion over time was evaluated over 13 weeks using UV-vis spectroscopy and Zeta Potential. With the most relevant data collected, sonication energies of 190, 390 and 490 J/g, at 10 mM were selected at the first and the fourth week of storage to obtain Portland cement specimens. Finally, we found an improvement of the mechanical properties of the samples built with Portland cement and solutions stored for one and four weeks; it can be concluded that the MWCNTs improved the hydration period.


2013 ◽  
Vol 539 ◽  
pp. 35-39 ◽  
Author(s):  
Yue Li ◽  
Qian Qian Yan

The influence of water to binder (W/B), types and dosage of supplementary cementitious materials (SCM) on the internal relative humidity (IRH) and autogenous shrinkage (AS) of cement pastes caused by self-desiccation were investigated, and their relationship was discussed. The results show that, W/B is a main factor that affects IRH change and AS of cement pastes with SCM. With the decrease of W/B, IRH of cement pastes decreases, but AS of cement pastes increases. Different types and dosages of SCM affect the IRH differently; fly ash (FA) reduces AS, silica fume (SF) increases AS, and the effect of GBFS on AS is between FA and GBFS. The linear correlation between the change of IRH and AS of cement pastes with SCM is established.


2011 ◽  
Vol 82 ◽  
pp. 118-123 ◽  
Author(s):  
Luigi Coppola ◽  
Alessandra Buoso ◽  
Fabio Corazza

Cement pastes reinforced with Multi-Walled carbon NanoTubes (MWNTs) are smart materials with piezoresistivity properties. Adding carbon nanotubes to the cement matrix, in fact, the electrical resistivity of cementitious composites changes with the stress conditions under static and dynamic loads. This particular behaviour can be used to evaluate the stress level in reinforced concrete structures, to monitor the traffic flow, to weigh vehicles. In this paper data on pressure-sensitive behaviour under compressive stress of cement pastes and mortars containing different percentages (from 0.0% to 1.0% vs. cement mass) of MWNTs are presented.In order to form a conductive network and enhancethe piezoresistive properties of cementitious mixtures, Carbon NanoTubes (CNTs) need to be efficiently dispersed in the cement matrix. Two different methods to disperse CNTsin the cement matrix were used. The first one uses a surfactant (Sodium Linear Alkyl Benzene Sulphonate - LAS): MWNTs were dispersed in a LAS aqueous solution,and thenmixed with cement and a defoamer (tributyl phosphate) to decrease the air bubble in MWNT filled cement-based composites. The second method consists in mixing CNTs with about 50% of the mixing water in a becker by means of a glass wand. Then, the solution is sonicated by an ultrasonic generator for 10 minutes. Finally, the sonicatedCNT-aqueous solution ismixed with cement (and sand for the mortars). The piezoresistivity properties of the cementitious mixtures manufactured with the two above mentioned CNTs dispersing methods will be compared.Experimental results show that the electrical resistance changes synchronously with the compressive stress levelsfor the specimens manufactured with both methods. Therefore, CNTs improve the pressure-sensitivity of cementitious composites. Moreover, the piezoresistive response is better for cementitious composites manufactured by using the surfactant agent to disperse CNTs. Data indicate that – thanks to the better dispersion of nanotubes promoted by the surfactant - the pressure-sensitivity properties of cement pastes can be achieved even by using a very low percentage of CNTS (0.1% vs. cement mass). These findings seem to indicate that self-sensing CNTs/cement composite can be produced. These smart materials have great potential and they could be used in the next future in concrete field for practical applications to monitor the stress level of reinforced concrete elements subjected to static, dynamic and impact loads. In particular, informations on actual stress existing under dynamic and impact loads could be improve design procedures in protective structures.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 557
Author(s):  
Grigory Yakovlev ◽  
Černý Vít ◽  
Irina Polyanskikh ◽  
Anastasiya Gordina ◽  
Igor Pudov ◽  
...  

The research results presented in this article were obtained by joint scientific research on creatingcement materials with reduced impedance. It is known that functional additives added to impart electrically conductive properties have a negative impact on physical and mechanical characteristics of the material. This study suggests using the multiwall carbon nanotubes in the amount of 7% from binder mass as a functional additive. The results obtained prove that the addition of this amount of the modifier does not lead to a significant decrease of strength characteristics. Calcium nitrate in the amount of 1–7% was added in order to level the strength loss and to ensure the effective stable electrical conductivity. The multifunctionality of using this salt has been proven, which is manifested in the anti-frost and anticorrosive effects as well in enhancement of electrical conductivity. The optimal composition of the additive with 7% of carbon nanotubes and 3% of calcium nitrate ensures a reduced electrical impedance of cement matrix. The electrical conductivity was 2440 Ohm, while the decrease of strength properties was within 10% in comparison tothe control sample. The nature of changes in the microstructure were studied to determine the influence of complex modifications that showed significant changes in the morphology of the hydration products. The optimum electrical characteristics of cementitious materials are provided due to the uniform distribution of carbon nanotubes and the formation of a network of interconnected micropores filled with the solution of calcium nitrate that provides additional and stable electrical conductivity over time.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5248
Author(s):  
Laura Silvestro ◽  
Artur Ruviaro ◽  
Geannina Lima ◽  
Paulo de Matos ◽  
Afonso R. G. de Azevedo ◽  
...  

The functionalization process usually increases the localized defects of carbon nanotubes (CNT). Thus, the ultrasonication parameters used for dispersing non-functionalized CNT should be carefully evaluated to verify if they are adequate in dispersing functionalized CNT. Although ultrasonication is widely used for non-functionalized CNT, the effect of this dispersing process of functionalized CNT has not been thoroughly investigated. Thus, this work investigated the effect of ultrasonication on functionalized CNT + superplasticizer (SP) aqueous dispersions by ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). Furthermore, Portland cement pastes with additions of 0.05% and 0.1% CNT by cement weight and ultrasonication amplitudes of 0%, 50% and 80% were evaluated through rheometry, isothermal calorimetry, compressive strength at 1, 7 and 28 days, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). FTIR results from CNT + SP dispersions indicated that ultrasonication may negatively affect SP molecules and CNT graphene structure. The increase in CNT content and amplitude of ultrasonication gradually increased the static and dynamic yield stress of paste but did not significantly affect its hydration kinetics. Compressive strength results indicated that the optimum CNT content was 0.05% by cement weight, which increased the strength of composite by up to 15.8% compared with the plain paste. CNT ultrasonication neither increases the degree of hydration of cement nor the mechanical performance of composite when compared with mixes containing unsonicated CNT. Overall, ultrasonication of functionalized CNT is not efficient in improving the fresh and hardened performance of cementitious composites.


2020 ◽  
Vol 13 (2) ◽  
pp. 455-463
Author(s):  
J. E. L. de SIQUEIRA ◽  
P. J. P. GLEIZE

Abstract The excellent mechanical properties of carbon nanotubes (CNTs) make them a highly attractive material for use as reinforcement in cement composites. However, it is established that this nanomaterial presents a severe dispersion problem in cement matrices owing to its high specific surface area. An alternative method for dispersing the CNTs is the use of sonication in the presence of a superplasticizer admixture. However, high energy sonication can severely damage CNTs, which can affect their behavior in cement pastes. Thus, it is necessary to optimize the CNTs sonication parameters to optimize the performance of CNT-cement pastes. After sonication with different energies of CNTs water suspensions, the CNTs dispersion was evaluated through UV-Vis spectroscopy and the eventual CNTs damage observed by TEM. Workability, compressive and flexural strengths of the CNTs-cement pastes were also measured. The results revealed that the sonication parameters can be optimized to enhance the effect of CNTs on cement paste behavior.


2007 ◽  
Vol 546-549 ◽  
pp. 2307-2312
Author(s):  
Yan Zhao ◽  
Yue Xin Duan

The dispersion of CNTs (Carbon Nanotubes) within polymer matrix is a big obstruction to restrict the application of CNTs. In this paper, the dispersion of MWCNTs(Multi-walled Carbon Nanotubes) within epoxy resin, which was improved by the coupling agent Volan and dispersing agent BYK, were studied. It showed that the best dispersing result of MWCNTs was obtained by combination treatment of Volan and BYK.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 807
Author(s):  
B. Del Moral ◽  
I. Martín Gullón ◽  
R. Navarro ◽  
O. Galao ◽  
F.J. Baeza ◽  
...  

Different studies in the literature indicate the effectiveness of CNTs as reinforcing materials in cement–matrix composites due to their high mechanical strength. Nevertheless, their incorporation into cement presents some difficulties due to their tendency to agglomerate, yielding a non-homogeneous dispersion in the paste mix that results in a poor cement–CNTs interaction. This makes the surface modification of the CNTs by introducing functional groups on the surface necessary. In this study, three different treatments for incorporating polar oxygen functional groups onto the surface of carbon nanotubes have been carried out, with the objective of evaluating the influence of the type and oxidation degree on the mechanical and electrical properties and in strain-sensing function of cement pastes containing CNTs. One treatment is in liquid phase (surface oxidation with HNO3/H2SO4), the second is in gas phase (O3 treatment at 25 and 160 °C), and a third is a combination of gas-phase O3 treatment plus NaOH liquid phase. The electrical conductivity of cement pastes increased with O3- and O3-NaOH-treated CNTs with respect to non-treated ones. Furthermore, the oxygen functionalization treatments clearly improve the strain sensing performance of the CNT-cement pastes, particularly in terms of the accuracy of the linear correlation between the resistance and the stress, as well as the increase in the gage factor from 28 to 65. Additionally, the incorporation of either non-functionalized or functionalized CNTs did not produce any significant modification of the mechanical properties of CNTs. Therefore, the functionalization of CNTs favours the de-agglomeration of CNTs in the cement matrix and consequently, the electrical conductivity, without affecting the mechanical behaviour.


Sign in / Sign up

Export Citation Format

Share Document