scholarly journals Metabolic Power, Active Drag, Mechanical and Propelling Efficiency of Elite Swimmers at 100 Meter Events in Different Competitive Swimming Techniques

2021 ◽  
Vol 11 (18) ◽  
pp. 8511
Author(s):  
Sergei Kolmogorov ◽  
Andrei Vorontsov ◽  
João Paulo Vilas-Boas

Eight elite swimmers—four females and four males—were studied, each of whom specialized in different swimming techniques and ranked among the top 10 in the world in the 100 m event in their swimming specialty. Methods included a complex of physiological, biomechanical and hydrodynamic procedures, as well as mathematical modeling. During the special preparation period for the 2017 Swimming World Championship, all subjects performed an 8 × 100 m swimming step-test using their main swimming technique. The relationships between velocity, mechanical and metabolic power were obtained and analyzed for each swimming technique. It was found that, at the last stage of the test, in all swimming techniques, men demonstrated higher values of metabolic power (Pai = 3346–3560 W) and higher mechanical efficiency (eg = 0.062–0.068) than women (Pai = 2248–2575 W; eg = 0.049–0.052). As for propelling efficiency, women (ep = 0.67–0.71) and men (ep = 0.65–0.71) did not differ from each other. Results showed that the frontal component of active drag force is the main reason for the existing differences in maximal swimming velocity between different techniques, since no relevant differences were observed for mechanical and propelling efficiencies among swimming techniques.

2012 ◽  
Vol 113 (4) ◽  
pp. 584-594 ◽  
Author(s):  
Paola Zamparo ◽  
Ian L. Swaine

Determining the efficiency of a swimming stroke is difficult because different “efficiencies” can be computed based on the partitioning of mechanical power output (Ẇ) into its useful and nonuseful components, as well as because of the difficulties in measuring the forces that a swimmer can exert in water. In this paper, overall efficiency (ηO = ẆTOT/Ė, where ẆTOT is total mechanical power output, and Ė is overall metabolic power input) was calculated in 10 swimmers by means of a laboratory-based whole-body swimming ergometer, whereas propelling efficiency (ηP = ẆD/ẆTOT, where ẆD is the power to overcome drag) was estimated based on these values and on values of drag efficiency (ηD = ẆD/Ė): ηP = ηD/ηO. The values of ηD reported in the literature range from 0.03 to 0.09 (based on data for passive and active drag, respectively). ηO was 0.28 ± 0.01, and ηP was estimated to range from ∼0.10 (ηD = 0.03) to 0.35 (ηD = 0.09). Even if there are obvious limitations to exact simulation of the whole swimming stroke within the laboratory, these calculations suggest that the data reported in the literature for ηO are probably underestimated, because not all components of ẆTOT can be measured accurately in this environment. Similarly, our estimations of ηP suggest that the data reported in the literature are probably overestimated.


2020 ◽  
Vol 41 (05) ◽  
pp. 318-327 ◽  
Author(s):  
Diogo Duarte Carvalho ◽  
Susana Soares ◽  
Rodrigo Zacca ◽  
João Sousa ◽  
Daniel Almeida Marinho ◽  
...  

AbstractThe anaerobic threshold (AnT) seems to be not only a physiologic boundary but also a transition after which swimmers technique changes, modifying their biomechanical behaviour. We expanded the AnT concept to a biophysical construct in the four conventional swimming techniques. Seventy-two elite swimmers performed a 5×200 m incremental protocol in their preferred swimming technique (with a 0.05 m·s−1 increase and a 30 s interval between steps). A capillary blood samples were collected from the fingertip and stroke rate (SR) and length (SL) determined for the assessment of [La], SR and SL vs. velocity inflexion points (using the interception of a pair of linear and exponential regression curves). The [La] values at the AnT were 3.3±1.0, 3.9±1.1, 2.9±1 .34 and 4.5±1.4 mmol·l−1 (mean±SD) for front crawl, backstroke, breaststroke and butterfly, and its corresponding velocity correlated highly with those at SR and SL inflection points (r=0.91–0.99, p<0.001). The agreement analyses confirmed that AnT represents a biophysical boundary in the four competitive swimming techniques and can be determined individually using [La] and/or SR/SL. Blood lactate increase speed can help characterise swimmers’ anaerobic behaviour after AnT and between competitive swimming techniques.


Author(s):  
Beatriz Lara ◽  
Juan Del Coso

In 1500 m freestyle swimming races, pacing is generally represented by a parabolic or U-shaped curve indicating that swimming velocity is greatest at the start and the last laps of the race while swimmers maintain an even pace through the middle section of the race. However, there is no information to determine if 1500 m race winners select pacing different to other, less successful swimmers within the same competition. Therefore, this investigation aimed to describe the pacing strategies adopted by 1500 m freestyle competitive swimmers in World Championships (long course), from 2003 to 2019 to determine the most effective pacing to obtain victory or a medal. The official overall and split times for 1500 m freestyle races of the Fédération Internationale de Natation (FINA) were obtained from the website of this organization. In total, data of 143 swimming performances (71 male and 72 female) were extracted. With the split times, lap times, and position were calculated across the race. To determine differences in the pacing between best- and worst-ranked finalist, swimmers in each race were divided into four groups based on the final position (1st vs. 2nd vs. 3rd vs. 4–8th). All the lap times of the winners of the race were faster than those of participants classified as 4–8th position for men and women races (p < 0.05). However, there were no differences in lap velocity among the different positions achieved at the end of the race when it was normalized by average race velocity. Additionally, there were no differences in the lap-to-lap variability among swimmers with different positions at the end of the race. In summary, both men and women elite swimmers selected parabolic pacing consisting of a fast start in the first lap, an even pace close to their average race velocity in the mid-section of the race (from 50 to 1400 m), followed by an end spurt in the final lap(s). This pattern was very similar in all finalists irrespective of the final position in the race. Hence, the obtaining of a medal in the World Championships was associated to possessing a faster average race velocity rather than a specific pacing profile through the race.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Junqiang Qiu ◽  
Mingxing Li ◽  
Longyan Yi ◽  
Zhaoran Hou ◽  
Fan Yang ◽  
...  

Objective Training monitoring has become an integral component of total athlete training. Systematically monitoring the physiological and biochemical variables related to performance helps coaches and athletes to measure the effectiveness of their training programs and decide how to revise or update those programs, especially in swimming training. The key purpose of this study is to evaluate the physical function characteristics during preparation season and stress response during competition training sessions in 2017, and provides the helpful data for scientific training for the implementation of the preparation process. Methods During the preparation period, the National Swimming Team athletes were planed to screen and test the physical function characteristics. There are 39 male athletes and 37 female athletes to participate in the study. Body composition was assessed with dual energy X-ray (DXA). Anthropometric characteristics were assessed using Anthroscan 3D VITUS body scanner, and pulmonary function test using CHEST portable lung function meter(HI-101). During the competition period, the training load monitoring targets were 2 elite players who participated in XVII World Aquatics Championship in Budapest-2017 and the National Games 2017. The monitoring methods mainly included: blood tests (including Hb, CK, BU, testosterone, cortisol and ferritin etc.) were used to monitor the athlete's fitness functional status, and the Z-score method was used to express the index changes of two athletes; blood lactate was used to monitor the training load of athletes, and urine indexes were used to monitor body fluid balance and fatigue. Results 1. During the preparation period, the weight of male athletes is 78.4±8.2kg, the percentage of body fat is 15.9±2.8%, the weight of female athletes is 64.8±6.6kg, and the percentage of body fat is 24.2±3.5%. The vital capacity(VC) was 6.65±0.87 L for males and 4.86±0.69 L for females, the value of forced vital capacity(FVC) was 4.29±1.33 L for males and 3.43±0.96 L for females, and the mean value of ventilation per minute was 148.1±23.12 L for males and 110.4 ± 19.67 L for females. 2. During the competition preparation period, Z score was used to express the blood indicators of two athletes, before the XVII World Aquatics Championship in Budapest-2017, the Z score of Hb, T, T/C ratio and ferritin were (-0.5, 0, -0.4, 1.1) and (-0.8, -0.1, -1.0, 0), respectively. Before the competition of the National Games, the Z scores were (1.0, 0.3, 0.7, 0.6) and (1.4, 1.0, 0.1, -0.6) respectively. 3. Training load monitoring was carried out using the blood lactate control test, as the training load increased, the athletes' performance improved and the lactate level increased slightly. 4. The urine indicator test is used to observe the athlete's dehydration and recovery. On the second morning after the intensive training day, both athletes were negative for urine protein and with normal urine specific gravity. Conclusions 1. The screen and tests about the physical function characteristics of swimming athletes during preparation period is useful to develop a personalized training plan; 2. Z-score is easy and feasible for the elite swimmers to monitoring physical fitness capabilities, and higher Z-score is related with better athletic performance; 3. Blood lactate control test can be used for the training intensity monitoring of swimmers, athletes show higher levels of lactic acid metabolism and higher athletic performance before the competition.


Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 16 ◽  
Author(s):  
Gabriela Fischer ◽  
Pedro Figueiredo ◽  
Luca Paolo Ardigò

Background: This study aimed at comparing bioenergetics and biomechanical parameters between athletes with tetraplegia and paraplegia riding race handbikes at submaximal speeds in ecological conditions. Methods: Five athletes with tetraplegia (C6-T1, 43 ± 6 yrs, 63 ± 14 kg) and 12 athletes with paraplegia (T4-S5, 44 ± 7 yrs, 72 ± 12 kg) rode their handbikes at submaximal speeds under metabolic measurements. A deceleration method (coasting down) was applied to calculate the rolling resistance and frontal picture of each participant was taken to calculate air resistance. The net overall Mechanical Efficiency (Eff) was calculated by dividing external mechanical work to the corresponding Metabolic Power. Results: Athletes with tetraplegia reached a lower aerobic speed (4.7 ± 0.6 m s−1 vs. 7.1 ± 0.9 m s−1, P = 0.001) and Mechanical Power (54 ± 15 W vs. 111 ± 25 W, P = 0.001) compared with athletes with paraplegia. The metabolic cost was around 1 J kg−1 m−1 for both groups. The Eff values (17 ± 2% vs. 19 ± 3%, P = 0.262) suggested that the handbike is an efficient assisted locomotion device. Conclusion: Handbikers with tetraplegia showed lower aerobic performances but a similar metabolic cost compared with handbikers with paraplegia at submaximal speeds in ecological conditions.


1995 ◽  
Vol 27 (Supplement) ◽  
pp. S26
Author(s):  
K. Wakayoshi ◽  
A. Nakatani ◽  
L. J. DʼAcquisto ◽  
J. M. Cappaert ◽  
J. P. Troup

Sports ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 235 ◽  
Author(s):  
Bjørn Harald Olstad ◽  
Veronica Bjørlykke ◽  
Daniela Schäfer Olstad

The main purpose of this study was to identify whether a different protocol to achieve maximal heart rate should be used in sprinters when compared to middle-distance swimmers. As incorporating running training into swim training is gaining increased popularity, a secondary aim was to determine the difference in maximal heart rate between front crawl swimming and running among elite swimmers. Twelve elite swimmers (4 female and 8 male, 7 sprinters and 5 middle-distance, age 18.8 years and body mass index 22.9 kg/m2) swam three different maximal heart rate protocols using a 50 m, 100 m and 200 m step-test protocol followed by a maximal heart rate test in running. There were no differences in maximal heart rate between sprinters and middle-distance swimmers in each of the swimming protocols or between land and water (all p ≥ 0.05). There were no significant differences in maximal heart rate beats-per-minute (bpm) between the 200 m (mean ± SD; 192.0 ± 6.9 bpm), 100 m (190.8 ± 8.3 bpm) or 50 m protocol (191.9 ± 8.4 bpm). Maximal heart rate was 6.7 ± 5.3 bpm lower for swimming compared to running (199.9 ± 8.9 bpm for running; p = 0.015). We conclude that all reported step-test protocols were suitable for achieving maximal heart rate during front crawl swimming and suggest that no separate protocol is needed for swimmers specialized on sprint or middle-distance. Further, we suggest conducting sport-specific maximal heart rate tests for different sports that are targeted to improve the aerobic capacity among the elite swimmers of today.


1988 ◽  
Vol 65 (6) ◽  
pp. 2506-2512 ◽  
Author(s):  
H. M. Toussaint ◽  
A. Beelen ◽  
A. Rodenburg ◽  
A. J. Sargeant ◽  
G. de Groot ◽  
...  

In this study the propelling efficiency (ep) of front-crawl swimming, by use of the arms only, was calculated in four subjects. This is the ratio of the power used to overcome drag (Pd) to the total mechanical power (Po) produced including power wasted in changing the kinetic energy of masses of water (Pk). By the use of an extended version of the system to measure active drag (MAD system), Pd was measured directly. Simultaneous measurement of O2 uptake (VO2) enabled the establishment of the relationship between the rate of the energy expenditure (PVO2) and Po (since when swimming on the MAD system Po = Pd). These individual relationships describing the mechanical efficiency (8-12%) were then used to estimate Po in free swimming from measurements of VO2. Because Pd was directly measured at each velocity studied by use of the MAD system, ep could be calculated according to the equation ep = Pd/(Pd + Pk) = Pd/Po. For the four top class swimmers studied, ep was found to range from 46 to 77%. Total efficiency, defined as the product of mechanical and propelling efficiency, ranged from 5 to 8%.


2011 ◽  
Vol 6 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Jason D. Vescovi ◽  
Olesya Falenchuk ◽  
Greg D. Wells

Purpose:Blood lactate concentration, [BLa], after swimming events might be influenced by demographic features and characteristics of the swim race, whereas active recovery enhances blood lactate removal. Our aims were to (1) examine how sex, age, race distance, and swim stroke influenced [BLa] after competitive swimming events and (2) develop a practical model based on recovery swim distance to optimize blood lactate removal.Methods:We retrospectively analyzed postrace [BLa] from 100 swimmers who competed in the finals at the Canadian Swim Championships. [BLa] was also assessed repeatedly during the active recovery. Generalized estimating equations were used to evaluate the relationship between postrace [BLa] with independent variables.Results:Postrace [BLa] was highest following 100–200 m events and lowest after 50 and 1500 m races. A sex effect for postrace [BLa] was observed only for freestyle events. There was a negligible effect of age on postrace [BLa]. A model was developed to estimate an expected change in [BLa] during active recovery (male = 0; female = 1): [BLa] change after active recovery = –3.374 + (1.162 × sex) + (0.789 × postrace [BLa]) + (0.003 × active recovery distance).Conclusions:These findings indicate that swimmers competing at an elite standard display similar postrace [BLa] and that there is little effect of age on postrace [BLa] in competitive swimmers aged 14 to 29 y.


2008 ◽  
Vol 24 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Per-Ludvik Kjendlie ◽  
Robert Keig Stallman

The aims of this study were to compare drag in swimming children and adults, quantify technique using the technique drag index (TDI), and use the Froude number (Fr) to study whether children or adults reach hull speed at maximal velocity (vmax). Active and passive drag was measured by the perturbation method and a velocity decay method, respectively, including 9 children aged 11.7 ± 0.8 and 13 adults aged 21.4 ± 3.7. The children had significantly lower active (kAD) and passive drag factor (kPD) compared with the adults. TDI (kAD/kPD) could not detect any differences in swimming technique between the two groups, owing to the adults swimming maximally at a higher Fr, increasing the wave drag component, and masking the effect of better technique. The children were found not to reach hull speed atvmax, and their Fr were 0.37 ± 0.01 vs. the adults 0.42 ± 0.01, indicating adults’ larger wave-making component of resistance atvmaxcompared with children. Fr is proposed as an evaluation tool for competitive swimmers.


Sign in / Sign up

Export Citation Format

Share Document