scholarly journals Comparative Transcriptomics for Pepper (Capsicum annuum L.) under Cold Stress and after Rewarming

2021 ◽  
Vol 11 (21) ◽  
pp. 10204
Author(s):  
Wu Miao ◽  
Jingshuang Song ◽  
Yanwu Huang ◽  
Rongyun Liu ◽  
Gaofeng Zou ◽  
...  

Cold stress has become one of the main abiotic stresses in pepper, which severely limits the growth and development of pepper. In this study, the physiological indicators and transcriptome of a cold-tolerance (CT) inbred line A188 and a cold-sensitive (CS) inbred line A122 under cold–rewarm treatments were studied; the aim of this study was to determine the potential of the key factors in pepper response to cold stress. Compared with CT, CS wilts more seriously after cold stress, with poor resilience, higher content of malondialdehyde, and lower content of soluble sugar and total chlorophyll. Moreover, during cold treatment, 7333 and 5953 differentially expressed genes (DEGs) were observed for CT and CS, respectively. These DEGs were significantly enriched in pathways related to photosynthesis, plant hormone signal transduction, and DNA damage repair. Interestingly, in addition to the widely studied transcription factors related to cold, it was also found that 13 NAC transcription factors increased significantly in the T4 group; meanwhile, the NAC8 (Capana02g003557) and NAC72 (Capana07g002219) in CT were significantly higher than those in CS under rewarming for 1 h after 72 h cold treatment. Notably, weighted gene coexpression network analysis identified four positively correlated modules and eight hub genes, including zinc finger proteins, heat shock 70 kda protein, and cytochrome P450 family, which are related to cold tolerance. All of these pathways and genes may be responsible for the response to cold and even the cold tolerance in pepper.

Author(s):  
Xing Huang ◽  
Yongsheng Liang ◽  
Baoqing Zhang ◽  
Xiupeng Song ◽  
Yangrui Li ◽  
...  

AbstractSugarcane is an important crop worldwide, and most sugar is derived directly from sugarcane. Due to its thermophilic nature, the yield of sugarcane is largely influenced by extreme climate conditions, especially cold stress. Therefore, the development of sugarcane with improved cold tolerance is an important goal. However, little is known about the multiple mechanisms underlying cold acclimation at the bud stage in sugarcane. In this study, we emphasized that sensitivity to cold stress was higher for the sugarcane variety ROC22 than for GT42, as determined by physical signs, including bud growth capacity, relative conductivity, malonaldehyde contents, and soluble sugar contents. To understand the factors contributing to the difference in cold tolerance between ROC22 and GT42, comparative transcriptome analyses were performed. We found that genes involved in the regulation of the stability of the membrane system were the relative determinants of difference in cold tolerance. Additionally, genes related to protein kinase activity, starch metabolism, and calcium signal transduction were associated with cold tolerance. Finally, 25 candidate genes, including 23 variety-specific and 2 common genes, and 7 transcription factors were screened out for understanding the possible cold resistance mechanism. The findings of this study provide candidate gene resources for cold resistance and will improve our understanding of the regulation of cold tolerance at the bud stage in sugarcane.


2021 ◽  
Author(s):  
Zemin Wang ◽  
Darren Chern Jan Wong ◽  
Yi Wang ◽  
Guangzhao Xu ◽  
Chong Ren ◽  
...  

Abstract Cultivated grapevine (Vitis) is a highly valued horticultural crop, and cold stress affects its growth and productivity. Wild Amur grape (Vitis amurensis) PAT1 (Phytochrome A signal transduction 1, VaPAT1) is induced by low temperature, and ectopic expression of VaPAT1 enhances cold tolerance in Arabidopsis (Arabidopsis thaliana). However, little is known about the molecular mechanism of VaPAT1 during the cold stress response in grapevine. Here, we confirmed the overexpression of VaPAT1 in transformed grape calli enhanced cold tolerance. Yeast two-hybrid and bimolecular fluorescence complementation assays highlighted an interaction between VaPAT1 with INDETERMINATE-DOMAIN 3 (VaIDD3). A role of VaIDD3 in cold tolerance was also indicated. Transcriptome analysis revealed VaPAT1 and VaIDD3 overexpression and cold treatment coordinately modulate the expression of stress-related genes including lipoxygenase 3 (LOX3), a gene encoding a key jasmonate biosynthesis enzyme. Co-expression network analysis indicated LOX3 might be a downstream target of VaPAT1. Both electrophoretic mobility shift and dual luciferase reporter assays showed the VaPAT1-IDD3 complex binds to the IDD-box (AGACAAA) in the VaLOX3 promoter to activate its expression. Overexpression of both VaPAT1 and VaIDD3 increased the transcription of VaLOX3 and JA levels in transgenic grape calli. Conversely, VaPAT1-SRDX (dominant repression) and CRISPR/Cas9-mediated mutagenesis of PAT1-ED causing the loss of the C-terminus in grape calli dramatically prohibited the accumulation of VaLOX3 and JA levels during cold treatment. Together, these findings point to a pivotal role of VaPAT1 in the cold stress response in grape by regulating JA biosynthesis.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Yan Li ◽  
Caihong Quan ◽  
Shuguang Yang ◽  
Shaohua Wu ◽  
Minjing Shi ◽  
...  

ICE (inducer of CBF expression) is a positive regulator of cold signaling pathway in plants. Identification of ICE transcription factors is important for the sustainable development of the natural rubber planting industry in nontraditional regions where sudden cold waves often occur. In this study, five ICE genes were isolated from genome of rubber tree (Hevea brasiliensis Muell. Arg.) for analysing tolerance to cold stress. They shared an ICE-specific region in the highly conserved bHLH-ZIP domain and were localized in the nucleus. The HbICEs were different in transcript abundance and expression patterns in response to cold and drought stresses and among different rubber tree clones. Generally, the expression level of HbICEs was significantly higher in the cold-tolerant rubber tree clones than that in the cold-sensitive rubber tree clones. Overexpression of HbICE1, HbICE2, and HbICE4 significantly enhanced the cold tolerance of transgenic Arabidopsis and tobacco, which showed a significant increase in chlorophyll content and decrease in relative water content and conductivity at the early stage of cold stress in comparison with wild-type plants. Furthermore, overexpression of HbICE2 and HbICE4, but also HbICE1 enhanced drought tolerance in transgenic Arabidopsis. The cold tolerance of rubber tree clones is positively controlled by the expression level of HbICE1, HbICE2, and HbICE4.


2020 ◽  
Author(s):  
Wen Song ◽  
Fengxian Tang ◽  
Wenchao Cai ◽  
Qin Zhang ◽  
Fake Zhou ◽  
...  

Abstract Background: During the low temperature storage, cantaloupe is susceptible to the cold stress, resulting in the loss of edible and commercial quality. To ascertain the molecular mechanisms of cold tolerance in cantaloupe, cold-sensitive cultivar Goldqueen-308 (GE) and cold-tolerant cultivar Jiashi-310 (JS) were used for quantitative proteomic analysis with iTRAQ in parallel. Results: In this work, two commercial cultivars were treated at 0.5℃ for 0, 12 and 24 days. Phenotypes assays showed that GE suffered a more severe damage as the cold treatment time extended. Proteomic analysis revealed that the number of differentially expressed proteins (DEPs) changed significantly over time in cold-exposed cantaloupe. Comparing with GE, JS responded in a prompter manner in terms of expressing cold-responding proteins during the similarly cold treatment. Furthermore, much more different groups of proteins were mobilized in response to the cold treatment in JS comparing with GE. Metabolic analysis indicated that more amino acids were up-regulated in JS during the early phases of cold stress. This study also identified some DEPs since they were up-regulated in JS or down-regulated in GE in terms of molecular mechanisms, which were mainly related to carbohydrate and energy metabolism, structure proteins, ROS scavening, amino acid metabolic and signaling transduction. Moreover, iTRAQ analysis was confirmed to be reliable via the results of phenotypes assays, metabolic analysis and q-PCR validation. Conclusion: By proteomics information,we found that the prompt response and the significant mobilization of proteins in JS maintained a higher level of cold tolerance, and the delay of cold response in GE could be a critical reason for the severe chilling injury. The candidate proteins we found will be the basis of future studies for further investigations and our findings may help to better understand the novel mechanisms of cold tolerance in cantaloupe.


Author(s):  
Jie Song ◽  
Hao Wu ◽  
Feng He ◽  
Jing Qu ◽  
Yue Wang ◽  
...  

Abstract C-repeat (CRT) binding factors (CBFs) are well known to act as crucial transcription factors that function in cold stress response. Arginine decarboxylase (ADC)-mediated putrescine biosynthesis has been reported to be activated in plants exposed to cold conditions, but it remains elusive whether CBFs can regulate ADC expression and putrescine accumulation. In this study, we show that cold up-regulated ADC gene (CsADC) and elevation of endogenous putrescine content in sweet orange (Citrus sinensis). Promoter of CsADC contains two CRT sequences that are canonical elements recognized by CBFs. Sweet orange genome contains four CBFs (CsCBF1-4), in which CsCBF1 was significantly induced by cold. CsCBF1, located in the nucleus, was demonstrated to bind directly and specifically to the promoter of CsADC and acted as a transcriptional activator. Overexpression of CsCBF1 led to notable elevation of CsADC and putrescine level in sweet orange transgenic plants, along with remarkably enhanced cold tolerance, relative to the wild type (WT). However, pretreatment with D-arginine, an ADC inhibitor, caused prominent reduction of endogenous putrescine level in the overexpressing lines, accompanied by greatly compromised cold tolerance. Taken together, these results demonstrate that CBF1 of sweet orange directly regulates ADC expression and modulates putrescine synthesis for orchestrating the cold tolerance. Our findings shed light into the transcriptional regulation of putrescine accumulation through targeting the ADC gene in the presence of cold stress. Meanwhile, this study illustrates a new mechanism underlying the CBF-mediated cold stress response.


2020 ◽  
Author(s):  
Li Zhang ◽  
Juju Li ◽  
Xinyong Guo ◽  
Zhanwen Zhang ◽  
Ping He ◽  
...  

Abstract Background Tomatoes (Lycopersicon esculentum Mill) are key foods and are also commonly explored in studies of molecular biology and evolution. The plant originates from the tropics, thus is sensitive to cold, and its growth and development are easily affected by cold stress. Results In this study, LeGPA1 was cloned from tomato leaves and used to generate LeGPA1-overexpressing and RNA-interference-expressing transgenic plants. The function and expression of LeGPA1 in response to cold stress were assessed. Subcellular localization analysis identified functional LeGPA1 on the plasma membrane. Spatiotemporal expression analysis revealed that endogenous LeGPA1 was highly expressed in the roots and leaves. Cold treatment positively induced the expression of LeGPA1. The overexpression of LeGPA1 conferred tolerance to cold conditions and regulated the expression of genes related to the ICE(INDUCER OF CBF EXPRESSION)- CBF(C-REPEAT-BINDING FACTOR) pathway in tomato plants. In the LeGPA1-overexpressed transgenic plants, antioxidant enzyme activity and soluble sugar and proline contents increased, and the production of reactive oxygen species and membrane lipid peroxidation decreased under cold stress. Conclusions This suggests that better antioxidant systems can cope with oxidative damage caused by cold stress, thereby stabilizing cell membrane structures and increasing the rate of photosynthesis. These findings provide evidence for the key role of LeGPA1 in mediating cold signal transduction in plant cells. These findings extend our knowledge of the roles of G-proteins in plants and help to clarify the mechanisms through which processing tomato plants can regulate growth and development.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jia Liu ◽  
Qinglin Meng ◽  
Hongtao Xiang ◽  
Fengmei Shi ◽  
Ligong Ma ◽  
...  

Abstract Background Rice (Oryza sativa L.) is a food crop for humans worldwide. However, temperature has an effect during the vegetative and reproductive stages. In high-latitude regions where rice is cultivated, cold stress is a major cause of yield loss and plant death. Research has identified a group of plant-specific transcription factors, DNA binding with one zinc fingers (DOFs), with a diverse range of functions, including stress signaling and stress response during plant growth. The aim of this study was to identify Dof genes in two rice subspecies, indica and japonica, and screen for Dof genes that may be involved in cold tolerance during plant growth. Results A total of 30 rice Dofs (OsDofs) were identified using bioinformatics and genome-wide analyses and phylogenetically analyzed. The 30 OsDOFs were classified into six subfamilies, and 24 motifs were identified based on protein sequence alignment. The chromosome locations of OsDofs were determined and nine gene duplication events were identified. A joint phylogenetic analysis was performed on DOF protein sequences obtained from four monocotyledon species to examine the evolutionary relationship of DOF proteins. Expression profiling of OsDofs from two japonica cultivars (Longdao5, which is cold-tolerant, and Longjing11, which is cold-sensitive) revealed that OsDof1 and OsDof19 are cold-inducible genes. We examined the seed setting rates in OsDof1- and OsDof19-overexpression and RNAi lines and found that OsDof1 showed a response to cold stress. Conclusions Our investigation identified OsDof1 as a potential target for genetic breeding of rice with enhanced cold tolerance.


Author(s):  
Chong Ren ◽  
Li Huayang ◽  
Zemin Wang ◽  
Zhanwu Dai ◽  
Fatma Lecourieux ◽  
...  

Abstract Cold tolerance is regulated by a variety of transcription factors (TFs) and their target genes. Except for the well-characterized C-repeat binding factors (CBFs)-dependent transcriptional cascade, the mechanisms of cold tolerance mediated by other transcriptional regulatory networks are still largely unknown. Here we used the assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq to identify cold responsive TFs in Vitis amurensis, a grape species with high cold hardiness. A number of 9 TFs, including CBF4, RAV1 and ERF104, were identified after cold treatment. Weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) analysis revealed that these TFs may regulate cold response through different pathways. As a prime candidate TF, overexpression of VaRAV1 in grape cells improved its cold tolerance. The transgenic cells exhibited low electrolyte leakage and malondialdehyde (MDA) content and high peroxidase (POD) activity. Moreover, the TF gene TCP8 and a gene involving in homogalacturonan biosynthesis were found to be regulated by VaRAV1, suggesting that the contribution of VaRAV1 to cold tolerance may be achieved by enhancing stability of cell membrane and regulating the expression of target genes involved in plant cell wall composition. Our work provides novel insights into plant response to cold stress and demonstrates the utility of ATAC-seq and RNA-seq for rapid identification of TFs in response to cold stress in grapevine. The VaRAV1 may play an important role in adaption to cold stress.


Sign in / Sign up

Export Citation Format

Share Document