scholarly journals Integration of Sentinel-1 and Sentinel-2 Data with the G-SMOTE Technique for Boosting Land Cover Classification Accuracy

2021 ◽  
Vol 11 (21) ◽  
pp. 10309
Author(s):  
Hamid Ebrahimy ◽  
Amin Naboureh ◽  
Bakhtiar Feizizadeh ◽  
Jagannath Aryal ◽  
Omid Ghorbanzadeh

The importance of Land Cover (LC) classification is recognized by an increasing number of scholars who employ LC information in various applications (i.e., address global climate change and achieve sustainable development). However, studying the roles of balancing data, image integration, and performance of different machine learning algorithms in various landscapes has not received as much attention from scientists. Therefore, the present study investigates the performance of three frequently used Machine Learning (ML) algorithms, including Extreme Learning Machines (ELM), Support Vector Machines (SVM), and Random Forest (RF) in LC mapping at six different landscapes. Moreover, the Geometric Synthetic Minority Over-sampling Technique (G-SMOTE) was adopted to deal with the class imbalance problem. In this work, the time-series of Sentinel-1 and Sentinel-2 data were integrated to improve LC mapping accuracy, taking advantage of both data. Moreover, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) was implemented to distinguish the most informative features. Based on the results, the RF integrated with G-SMOTE showed the best result for four landscapes (coastal, cropland, desert, and semi-arid). SVM integrated with G-SMOTE had the highest accuracy in the remaining two landscapes (plain and mountain). Applied ML algorithms showed good performances in various landscapes, ranging Overall Accuracy (OA) from 85% to 93% for RF, 83% to 94% for SVM, and 84% to 92% for ELM. The outcomes exhibit that although applying G-SMOTE may slightly decrease OA values, it generally boosts the results of LC classification accuracies in various landscapes, particularly for minority classes.

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1713
Author(s):  
Mohd Adil ◽  
Mohd Faizan Ansari ◽  
Ahmad Alahmadi ◽  
Jei-Zheng Wu ◽  
Ripon K. Chakrabortty

The cancelation of bookings puts a considerable strain on management decisions in the case of the hospitability industry. Booking cancelations restrict precise predictions and are thus a critical tool for revenue management performance. However, in recent times, thanks to the availability of considerable computing power through machine learning (ML) approaches, it has become possible to create more accurate models to predict the cancelation of bookings compared to more traditional methods. Previous studies have used several ML approaches, such as support vector machine (SVM), neural network (NN), and decision tree (DT) models for predicting hotel cancelations. However, they are yet to address the class imbalance problem that exists in the prediction of hotel cancelations. In this study, we have shortened this gap by introducing an oversampling technique to address class imbalance problems, in conjunction with machine learning algorithms to better predict hotel booking cancelations. A combination of the synthetic minority oversampling technique and the edited nearest neighbors (SMOTE-ENN) algorithm is proposed to address the problem of class imbalance. Class imbalance is a general problem that occurs when classifying which class has more examples compared to others. Our research has shown that, after addressing the class imbalance problem, the performance of a machine learning classifier improves significantly.


2021 ◽  
Vol 13 (9) ◽  
pp. 4728
Author(s):  
Zinhle Mashaba-Munghemezulu ◽  
George Johannes Chirima ◽  
Cilence Munghemezulu

Rural communities rely on smallholder maize farms for subsistence agriculture, the main driver of local economic activity and food security. However, their planted area estimates are unknown in most developing countries. This study explores the use of Sentinel-1 and Sentinel-2 data to map smallholder maize farms. The random forest (RF), support vector (SVM) machine learning algorithms and model stacking (ST) were applied. Results show that the classification of combined Sentinel-1 and Sentinel-2 data improved the RF, SVM and ST algorithms by 24.2%, 8.7%, and 9.1%, respectively, compared to the classification of Sentinel-1 data individually. Similarities in the estimated areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha for ST) show that machine learning can estimate smallholder maize areas with high accuracies. The study concludes that the single-date Sentinel-1 data were insufficient to map smallholder maize farms. However, single-date Sentinel-1 combined with Sentinel-2 data were sufficient in mapping smallholder farms. These results can be used to support the generation and validation of national crop statistics, thus contributing to food security.


2020 ◽  
Vol 12 (24) ◽  
pp. 4086
Author(s):  
Danielle Elis Garcia Furuya ◽  
João Alex Floriano Aguiar ◽  
Nayara V. Estrabis ◽  
Mayara Maezano Faita Pinheiro ◽  
Michelle Taís Garcia Furuya ◽  
...  

Riparian zones consist of important environmental regions, specifically to maintain the quality of water resources. Accurately mapping forest vegetation in riparian zones is an important issue, since it may provide information about numerous surface processes that occur in these areas. Recently, machine learning algorithms have gained attention as an innovative approach to extract information from remote sensing imagery, including to support the mapping task of vegetation areas. Nonetheless, studies related to machine learning application for forest vegetation mapping in the riparian zones exclusively is still limited. Therefore, this paper presents a framework for forest vegetation mapping in riparian zones based on machine learning models using orbital multispectral images. A total of 14 Sentinel-2 images registered throughout the year, covering a large riparian zone of a portion of a wide river in the Pontal do Paranapanema region, São Paulo state, Brazil, was adopted as the dataset. This area is mainly composed of the Atlantic Biome vegetation, and it is near to the last primary fragment of its biome, being an important region from the environmental planning point of view. We compared the performance of multiple machine learning algorithms like decision tree (DT), random forest (RF), support vector machine (SVM), and normal Bayes (NB). We evaluated different dates and locations with all models. Our results demonstrated that the DT learner has, overall, the highest accuracy in this task. The DT algorithm also showed high accuracy when applied on different dates and in the riparian zone of another river. We conclude that the proposed approach is appropriated to accurately map forest vegetation in riparian zones, including temporal context.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 94
Author(s):  
Alvaro Murguia-Cozar ◽  
Antonia Macedo-Cruz ◽  
Demetrio Salvador Fernandez-Reynoso ◽  
Jorge Arturo Salgado Transito

The scarcity of water for agricultural use is a serious problem that has increased due to intense droughts, poor management, and deficiencies in the distribution and application of the resource. The monitoring of crops through satellite image processing and the application of machine learning algorithms are technological strategies with which developed countries tend to implement better public policies regarding the efficient use of water. The purpose of this research was to determine the main indicators and characteristics that allow us to discriminate the phenological stages of maize crops (Zea mays L.) in Sentinel 2 satellite images through supervised classification models. The training data were obtained by monitoring cultivated plots during an agricultural cycle. Indicators and characteristics were extracted from 41 Sentinel 2 images acquired during the monitoring dates. With these images, indicators of texture, vegetation, and colour were calculated to train three supervised classifiers: linear discriminant (LD), support vector machine (SVM), and k-nearest neighbours (kNN) models. It was found that 45 of the 86 characteristics extracted contributed to maximizing the accuracy by stage of development and the overall accuracy of the trained classification models. The characteristics of the Moran’s I local indicator of spatial association (LISA) improved the accuracy of the classifiers when applied to the L*a*b* colour model and to the near-infrared (NIR) band. The local binary pattern (LBP) increased the accuracy of the classification when applied to the red, green, blue (RGB) and NIR bands. The colour ratios, leaf area index (LAI), RGB colour model, L*a*b* colour space, LISA, and LBP extracted the most important intrinsic characteristics of maize crops with regard to classifying the phenological stages of the maize cultivation. The quadratic SVM model was the best classifier of maize crop phenology, with an overall accuracy of 82.3%.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 591-606
Author(s):  
R. Brindha ◽  
Dr.M. Thillaikarasi

Big data analytics (BDA) is a system based method with an aim to recognize and examine different designs, patterns and trends under the big dataset. In this paper, BDA is used to visualize and trends the prediction where exploratory data analysis examines the crime data. “A successive facts and patterns have been taken in following cities of California, Washington and Florida by using statistical analysis and visualization”. The predictive result gives the performance using Keras Prophet Model, LSTM and neural network models followed by prophet model which are the existing methods used to find the crime data under BDA technique. But the crime actions increases day by day which is greater task for the people to overcome the challenging crime activities. Some ignored the essential rate of influential aspects. To overcome these challenging problems of big data, many studies have been developed with limited one or two features. “This paper introduces a big data introduces to analyze the influential aspects about the crime incidents, and examine it on New York City. The proposed structure relates the dynamic machine learning algorithms and geographical information system (GIS) to consider the contiguous reasons of crime data. Recursive feature elimination (RFE) is used to select the optimum characteristic data. Exploitation of gradient boost decision tree (GBDT), logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) are related to develop the optimum data model. Significant impact features were then reviewed by applying GBDT and GIS”. The experimental results illustrates that GBDT along with GIS model combination can identify the crime ranking with high performance and accuracy compared to existing method.”


Author(s):  
Hartono Hartono ◽  
Opim Salim Sitompul ◽  
Tulus Tulus ◽  
Erna Budhiarti Nababan

Class imbalance occurs when instances in a class are much higher than in other classes. This machine learning major problem can affect the predicted accuracy. Support Vector Machine (SVM) is robust and precise method in handling class imbalance problem but weak in the bias data distribution, Biased Support Vector Machine (BSVM) became popular choice to solve the problem. BSVM provide better control sensitivity yet lack accuracy compared to general SVM. This study proposes the integration of BSVM and SMOTEBoost to handle class imbalance problem. Non Support Vector (NSV) sets from negative samples and Support Vector (SV) sets from positive samples will undergo a Weighted-SMOTE process. The results indicate that implementation of Biased Support Vector Machine and Weighted-SMOTE achieve better accuracy and sensitivity.


2022 ◽  
Vol 16 (3) ◽  
pp. 1-37
Author(s):  
Robert A. Sowah ◽  
Bernard Kuditchar ◽  
Godfrey A. Mills ◽  
Amevi Acakpovi ◽  
Raphael A. Twum ◽  
...  

Class imbalance problem is prevalent in many real-world domains. It has become an active area of research. In binary classification problems, imbalance learning refers to learning from a dataset with a high degree of skewness to the negative class. This phenomenon causes classification algorithms to perform woefully when predicting positive classes with new examples. Data resampling, which involves manipulating the training data before applying standard classification techniques, is among the most commonly used techniques to deal with the class imbalance problem. This article presents a new hybrid sampling technique that improves the overall performance of classification algorithms for solving the class imbalance problem significantly. The proposed method called the Hybrid Cluster-Based Undersampling Technique (HCBST) uses a combination of the cluster undersampling technique to under-sample the majority instances and an oversampling technique derived from Sigma Nearest Oversampling based on Convex Combination, to oversample the minority instances to solve the class imbalance problem with a high degree of accuracy and reliability. The performance of the proposed algorithm was tested using 11 datasets from the National Aeronautics and Space Administration Metric Data Program data repository and University of California Irvine Machine Learning data repository with varying degrees of imbalance. Results were compared with classification algorithms such as the K-nearest neighbours, support vector machines, decision tree, random forest, neural network, AdaBoost, naïve Bayes, and quadratic discriminant analysis. Tests results revealed that for the same datasets, the HCBST performed better with average performances of 0.73, 0.67, and 0.35 in terms of performance measures of area under curve, geometric mean, and Matthews Correlation Coefficient, respectively, across all the classifiers used for this study. The HCBST has the potential of improving the performance of the class imbalance problem, which by extension, will improve on the various applications that rely on the concept for a solution.


2019 ◽  
Vol 11 (21) ◽  
pp. 2548
Author(s):  
Dong Luo ◽  
Douglas G. Goodin ◽  
Marcellus M. Caldas

Disasters are an unpredictable way to change land use and land cover. Improving the accuracy of mapping a disaster area at different time is an essential step to analyze the relationship between human activity and environment. The goals of this study were to test the performance of different processing procedures and examine the effect of adding normalized difference vegetation index (NDVI) as an additional classification feature for mapping land cover changes due to a disaster. Using Landsat ETM+ and OLI images of the Bento Rodrigues mine tailing disaster area, we created two datasets, one with six bands, and the other one with six bands plus the NDVI. We used support vector machine (SVM) and decision tree (DT) algorithms to build classifier models and validated models performance using 10-fold cross-validation, resulting in accuracies higher than 90%. The processed results indicated that the accuracy could reach or exceed 80%, and the support vector machine had a better performance than the decision tree. We also calculated each land cover type’s sensitivity (true positive rate) and found that Agriculture, Forest and Mine sites had higher values but Bareland and Water had lower values. Then, we visualized land cover maps in 2000 and 2017 and found out the Mine sites areas have been expanded about twice of the size, but Forest decreased 12.43%. Our findings showed that it is feasible to create a training data pool and use machine learning algorithms to classify a different year’s Landsat products and NDVI can improve the vegetation covered land classification. Furthermore, this approach can provide a venue to analyze land pattern change in a disaster area over time.


Author(s):  
Henock M. Deberneh ◽  
Intaek Kim

Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset.


Sign in / Sign up

Export Citation Format

Share Document