scholarly journals Research Progress and Prospects of Agricultural Aero-Bionic Technology in China

2021 ◽  
Vol 11 (21) ◽  
pp. 10435
Author(s):  
Yali Zhang ◽  
Haoxin Tian ◽  
Xinrong Huang ◽  
Chenyang Ma ◽  
Linlin Wang ◽  
...  

Accelerating the development of agricultural aviation technology is the need of China’s modern agricultural construction. With the rise of emerging industries such as artificial intelligence, biotechnology, autonomous navigation, and the Internet of Things, agricultural aviation is further developing toward the direction of intelligence to meet the requirements of efficient and sophisticated agricultural aviation operations. Bionics is a multi-discipline and comprehensive border subject. It is produced by the mutual penetration and integration of life science and engineering science. Bionic technology has received more and more attention in recent years, and breakthroughs have been made in the fields of biomedicine and health, military, brain science and brain-like navigation, and advanced manufacturing. This study summarized the research progress of biomimetic technology in the field of agricultural aviation from three aspects of biological perception, biological behavior, and biological intelligence. On this basis, problems of related research and application of agricultural aircraft in real-time obstacle avoidance, path planning, and intelligent navigation were analyzed. Combined with the practice of the rapid development of agricultural aircraft, research and application of bionic technology suitable for agricultural aircraft were then proposed. Finally, prospects of agricultural aero-bionic technology were also discussed from multiple bionic target fusion, three-dimensional spatial information exploration, sensors, and animal brain system mechanism. This review provides a reference for the development of bionic technology in China’s agricultural aviation.

2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


Author(s):  
A.B. Osadcha

In the context of the rapid development of scientific and technological progress in Ukraine, including the medical field, a significant contribution belongs to scientific researches based on world recognition, and publications in scientific journals indexed in international bibliometric databases, will lead to the possibility of upgrading modern science in medical higher educational institutions. The most significant in modern society is not only activity process or thought, but the result that scientific research provides. Scientific activity is difficult to evaluate with only one parameter; moreover, there is a need for evaluation using qualitative indicators. The article presents author’s research results of publication activity level in the medical field in Ukraine, taking into account world experience based on international bibliometric database Clarivate Analytics’s Web of Science. Clarivate Analytics accelerates research progress by providing researchers with reliable information sources, analytics around the world, and the ability to quickly create, defend, and commercialize new ideas. Clarivate Analytics is an independent company with more than 4000 employees working in more than 100 countries, and has a well-known brand — Web of Science. It provides access to the largest database of scientific articles from carefully selected reputable journals. Researchers can use effective search instruments that take into account metadata and bibliographic references and allow you to get the highest quality, meaningful and impartial information. Web of Science is an accurate and reliable source of information for assessing scientific work, the most comprehensive resource in which both quality and quantity are equally valued.


2019 ◽  
Vol 19 (3) ◽  
pp. 172-196 ◽  
Author(s):  
Ling-Yan Zhou ◽  
Zhou Qin ◽  
Yang-Hui Zhu ◽  
Zhi-Yao He ◽  
Ting Xu

Long-term research on various types of RNAs has led to further understanding of diverse mechanisms, which eventually resulted in the rapid development of RNA-based therapeutics as powerful tools in clinical disease treatment. Some of the developing RNA drugs obey the antisense mechanisms including antisense oligonucleotides, small interfering RNAs, microRNAs, small activating RNAs, and ribozymes. These types of RNAs could be utilized to inhibit/activate gene expression or change splicing to provide functional proteins. In the meantime, some others based on different mechanisms like modified messenger RNAs could replace the dysfunctional endogenous genes to manage some genetic diseases, and aptamers with special three-dimensional structures could bind to specific targets in a high-affinity manner. In addition, the recent most popular CRISPR-Cas technology, consisting of a crucial single guide RNA, could edit DNA directly to generate therapeutic effects. The desired results from recent clinical trials indicated the great potential of RNA-based drugs in the treatment of various diseases, but further studies on improving delivery materials and RNA modifications are required for the novel RNA-based drugs to translate to the clinic. This review focused on the advances and clinical studies of current RNA-based therapeutics, analyzed their challenges and prospects.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Liu Sun ◽  
Li Zhao ◽  
Rui-Yun Peng

AbstractWith the rapid development of terahertz technologies, basic research and applications of terahertz waves in biomedicine have attracted increasing attention. The rotation and vibrational energy levels of biomacromolecules fall in the energy range of terahertz waves; thus, terahertz waves might interact with biomacromolecules. Therefore, terahertz waves have been widely applied to explore features of the terahertz spectrum of biomacromolecules. However, the effects of terahertz waves on biomacromolecules are largely unexplored. Although some progress has been reported, there are still numerous technical barriers to clarifying the relation between terahertz waves and biomacromolecules and to realizing the accurate regulation of biological macromolecules by terahertz waves. Therefore, further investigations should be conducted in the future. In this paper, we reviewed terahertz waves and their biomedical research advantages, applications of terahertz waves on biomacromolecules and the effects of terahertz waves on biomacromolecules. These findings will provide novel ideas and methods for the research and application of terahertz waves in the biomedical field.


2016 ◽  
Vol 32 (1) ◽  
Author(s):  
Yuehao Luo ◽  
Xia Xu ◽  
Dong Li ◽  
Wen Song

AbstractWith the rapid development of science and technology, increasing research interests have been focused on environment protection, global warming, and energy shortage. At present, reducing friction force as much as possible has developed into an urgent issue. Sharkskin effect has the potential ability to lower viscous drag on the fluid-solid interface in turbulence, and therefore, how to fabricate bio-inspired sharkskin surfaces is progressively becoming the hot topic. In this review, various methods of fabricating drag reduction surfaces covering biological sharkskin morphology are illustrated and discussed systematically, mainly involving direct bio-replicated, synthetic fabricating, bio/micro-rolling, enlarged solvent-swelling, drag reduction additive low-releasing, trans-scale enlarged three-dimensional fabricating, flexible printing, large-proportional shrunken bio-replicating, ultraviolet (UV) curable painting, and stretching deformed methods. The overview has the potential benefits in better acquainting with the recent research status of fabricating sharkskin surfaces covering the biological morphology.


2013 ◽  
Vol 36 (5) ◽  
pp. 546-547 ◽  
Author(s):  
Theresa Burt de Perera ◽  
Robert Holbrook ◽  
Victoria Davis ◽  
Alex Kacelnik ◽  
Tim Guilford

AbstractAnimals navigate through three-dimensional environments, but we argue that the way they encode three-dimensional spatial information is shaped by how they use the vertical component of space. We agree with Jeffery et al. that the representation of three-dimensional space in vertebrates is probably bicoded (with separation of the plane of locomotion and its orthogonal axis), but we believe that their suggestion that the vertical axis is stored “contextually” (that is, not containing distance or direction metrics usable for novel computations) is unlikely, and as yet unsupported. We describe potential experimental protocols that could clarify these differences in opinion empirically.


Nanoscale ◽  
2021 ◽  
Author(s):  
Shaoyang Xiong ◽  
Yue Qin ◽  
Linhong Li ◽  
Guoyong Yang ◽  
Maohua Li ◽  
...  

In order to meet the requirement of thermal performance with the rapid development of high-performance electronic devices, constructing a three-dimensional thermal transport skeleton is an effective method for enhancing thermal...


2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5136
Author(s):  
Xiaoxin Fang ◽  
Qiwu Luo ◽  
Bingxing Zhou ◽  
Congcong Li ◽  
Lu Tian

The computer-vision-based surface defect detection of metal planar materials is a research hotspot in the field of metallurgical industry. The high standard of planar surface quality in the metal manufacturing industry requires that the performance of an automated visual inspection system and its algorithms are constantly improved. This paper attempts to present a comprehensive survey on both two-dimensional and three-dimensional surface defect detection technologies based on reviewing over 160 publications for some typical metal planar material products of steel, aluminum, copper plates and strips. According to the algorithm properties as well as the image features, the existing two-dimensional methodologies are categorized into four groups: statistical, spectral, model, and machine learning-based methods. On the basis of three-dimensional data acquisition, the three-dimensional technologies are divided into stereoscopic vision, photometric stereo, laser scanner, and structured light measurement methods. These classical algorithms and emerging methods are introduced, analyzed, and compared in this review. Finally, the remaining challenges and future research trends of visual defect detection are discussed and forecasted at an abstract level.


2021 ◽  
Vol 39 (2) ◽  
pp. 343-352
Author(s):  
Ajahati Mukti

Every object has its characteristic shape, appearance and responses to physical interactions. Computer graphics center on those three components of an object to bring them onto the computer display. With the rapid development of three dimensional (3D) printing technology, the accuracy of the focused object’s geometry was put forward. Point-based graphing is a way to taking the role in rendering the huge 3D sampled data. Based on the digital geometry processing of point-sampled model, various algorithms were reviewed, and some related key techniques were compared with the potential perspective of the future work in this area was also presented.


Sign in / Sign up

Export Citation Format

Share Document