scholarly journals Simulation-Based Shading Loss Analysis of a Shingled String for High-Density Photovoltaic Modules

2021 ◽  
Vol 11 (23) ◽  
pp. 11257
Author(s):  
Jaesung Bae ◽  
Hongsub Jee ◽  
Yongseob Park ◽  
Jaehyeong Lee

Shingled photovoltaic (PV) modules with increased output have attracted growing interest compared to conventional PV modules. However, the area per unit solar cell of shingled PV modules is smaller because these modules are manufactured by dividing and bonding solar cells, which means that shingled PV modules can easily have inferior shading characteristics. Therefore, analysis of the extent to which the shadow affects the output loss is essential, and the circuit needs to be designed accordingly. In this study, the loss resulting from the shading of the shingled string used to manufacture the shingled module was analyzed using simulation. A divided cell was modeled using a double-diode model, and a shingled string was formed by connecting the cell in series. The shading pattern was simulated according to the shading ratio of the vertical and horizontal patterns, and in the case of the shingled string, greater losses occurred in the vertical direction than the horizontal direction. In addition, it was modularized and compared with a conventional PV module and a shingled PV module. The results confirmed that the shingled PV module delivered higher shading output than the conventional PV module in less shade, and the result of the shading characteristic simulation of the shingled PV module was confirmed to be accurate within an error of 1%.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ju-Hee Kim ◽  
Jongsung Park ◽  
Donghwan Kim ◽  
Nochang Park

The corrosion of 62Sn36Pb2Ag solder connections poses serious difficulties for outdoor-exposed photovoltaic (PV) modules, as connection degradation contributes to the increase in series resistance (RS) of PV modules. In this study, we investigated a corrosion mitigation method based on the corrosion mechanism. The effect of added sacrificial metal on the reliability of PV modules was evaluated using the oxidation-reduction (redox) reaction under damp heat (DH) conditions. Experimental results after exposure to DH show that the main reason for the decrease in power was a drop in the module’s fill factor. This drop was attributed to the increase ofRS. The drop in output power of the PV module without added sacrificial metal is greater than that of the sample with sacrificial metal. Electroluminescence and current-voltage mapping analysis also show that the PV module with sacrificial metal experienced less degradation than the sample without sacrificial metal.


Author(s):  
Heangwoo Lee ◽  
Xiaolong Zhao ◽  
Janghoo Seo

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Vandana Jha ◽  
Uday Shankar Triar

This paper proposes an improved generalized method for evaluation of parameters, modeling, and simulation of photovoltaic modules. A new concept “Level of Improvement” has been proposed for evaluating unknown parameters of the nonlinear I-V equation of the single-diode model of PV module at any environmental condition, taking the manufacturer-specified data at Standard Test Conditions as inputs. The main contribution of the new concept is the improvement in the accuracy of values of evaluated parameters up to various levels and is based on mathematical equations of PV modules. The proposed evaluating method is implemented by MATLAB programming and, for demonstration, by using the values of parameters of the I-V equation obtained from programming results, a PV module model is build with MATLAB. The parameters evaluated by the proposed technique are validated with the datasheet values of six different commercially available PV modules (thin film, monocrystalline, and polycrystalline) at Standard Test Conditions and Nominal Operating Cell Temperature Conditions. The module output characteristics generated by the proposed method are validated with experimental data of FS-270 PV module. The effects of variation of ideality factor and resistances on output characteristics are also studied. The superiority of the proposed technique is proved.


2021 ◽  
Vol 13 (9) ◽  
pp. 5027
Author(s):  
Wenjie Zhang ◽  
Tongdan Gong ◽  
Shengbing Ma ◽  
Jianwei Zhou ◽  
Yingbo Zhao

In building integrated photovoltaics (PV), it is important to solve the heat dissipation problem of PV modules. In this paper, the computational fluid dynamics (CFD) method is used to simulate the flow field around the open-joint photovoltaic ventilated double-skin façades (OJ-PV-DSF) to study the influence of the mounting dimensions (MD) of a PV array on the module temperature. The typical summer afternoon meteorological parameters, such as the total radiation (715.4 W/m2), the outdoor temperature (33.1 °C), and the wind speed (2.0 m/s), etc., are taken as input parameters. With the DO (discrete ordinates) model and the RNG (renormalization-group) k − ε model, a steady state calculation is carried out to simulate the flow of air in and around the cavity under the coupling of hot pressure and wind pressure, thereby obtaining the temperature distribution of the PV array and the wall. In addition, the simulation results are compared with the onsite experimental data and thermal imaging to verify the accuracy of the CFD model. Then three MD of the open joints are discussed. The results show that when the a value (represents the distance between PV modules and wall) changes from 0.05 to 0.15, the temperature drop of the PV module is the most obvious, reaching 2.0 K. When the b value (representing the distance between two adjacent PV modules in the vertical direction) changes from 0 to 0.1, the temperature drop of the PV module is most obvious, reaching 1 K. When the c value (represents the distance between two adjacent PV modules in the horizontal direction) changes from 0 to 0.1, the temperature of the PV module is lowered by 0.8 K. Thus, a = 0.1–0.15, b = 0.1 and c = 0.1 are recommended for engineering applications to effectively reduce the module temperature.


Author(s):  
Nsed Ayip Akonjom ◽  
John Iyang Umuji ◽  
Ukoette Jeremiah Ekah

This central idea of this research is to investigate how voltage, current, power output and efficiency of polycrystalline photovoltaic (PV) modules installed in a Guinea Savanna and Mangrove Swamp is affected by temperature, relative humidity and irradiance. The study locations are Calabar (mangrove swamp) and Ogoja (guinea savanna), in Cross River State, Nigeria. Two polycrystalline PV modules of exact specification mounted on a platform one-metre-high above the ground were used. A digital solar power meter (SM206) and a digital solar flux meter (MS 6616) was used to monitor and measure solar power and solar flux reaching the PV modules. A digital hygrometer and thermometer (KT-908) were used to monitor and measure the relative humidity and ambient temperature level at the height of installation and a digital multimeter (M880C+) accompanied with a temperature sensor was used to monitor voltage, current and panel temperature values from the modules. Analysis of the collected data reveals that the efficiency of the modules were not constant throughout the day. However, a higher voltage production and efficiency level was obtained for the PV module installed in Ogoja than that installed in Calabar under their respective levels of relative humidity, temperature and irradiance.


2018 ◽  
Vol 8 (6) ◽  
pp. 3570-3575
Author(s):  
E. V. Palconit ◽  
M. L. S. Abundo

An electric boat system as a pilot study for the electric ferry was designed and field-tested in Samal Island, Philippines, to verify sustainability for inter-island transport. This pilot study uses 4.5m monohull with a displacement weight of 343kg. During the experiment, two cases were compared: in the first case the boat was powered solely with batteries and in the other case with the aid of photovoltaic (PV) modules. For the first case, 24V electric propulsion was driven by two 12V, 100Ah batteries, which resulted to a navigational range of around 18, 16 and 15 trips with energy consumption of 111.64Wh, 117.19Wh and 123.92Wh respectively. In the second case, the photovoltaic modules were attached on the boat to supplement the PV used while on sail. Results in the second case showed that PV module supplemented energy was about to 13.4%, 26.8% and 38.7% using three different speeds like 3.18, 3.32 and 3.84knots and the navigational range extended to 4km, 1km, and 14.4km respectively. Therefore, the electric boat with the aid of PV module answers the problem in the energy management system that deals with the sustainability of the system in the inter-island transport in Philippines.


Author(s):  
C. Calò ◽  
A. Lay-Ekuakille ◽  
P. Vergallo ◽  
C. Chiffi ◽  
A. Trotta ◽  
...  

One of the most important aspects of photovoltaic modules is reliability for future uses, that is, a certain module will last certain number of years in use (generally 30 or 35 years). Reliability yields from excellent qualification tests on photovoltaic (PV) modules. Testing for reliability identifies unknown failure mechanisms and whether modules are susceptible to known failure mechanisms. This paper illustrates techniques of outdoor measurements and qualification characterization to know PV module conditions for commercial uses. Matrix methods are used for energy prediction. Failure material tests, using digital imaging and thermography, have also been conducted.


2019 ◽  
Vol 11 (22) ◽  
pp. 6234 ◽  
Author(s):  
Hyeonwook Park ◽  
Sungho Chang ◽  
Sanghwan Park ◽  
Woo Kyoung Kim

The outdoor performance of n-type bifacial Si photovoltaic (PV) modules and string systems was evaluated for two different albedo (ground reflection) conditions, i.e., 21% and 79%. Both monofacial and bifacial silicon PV modules were prepared using n-type bifacial Si passivated emitter rear totally diffused cells with multi-wire busbar incorporated with a white and transparent back-sheet, respectively. In the first set of tests, the power production of the bifacial PV string system was compared with the monofacial PV string system installed on a grey concrete floor with an albedo of ~21% for approximately one year (June 2016–May 2017). In the second test, the gain of the bifacial PV string system installed on the white membrane floor with an albedo of ~79% was evaluated for approximately ten months (November 2016–August 2017). During the second test, the power production by an equivalent monofacial module installed on a horizontal solar tracker was also monitored. The gain was estimated by comparing the energy yield of the bifacial PV module with that of the monofacial module. For the 1.5 kW PV string systems with a 30° tilt angle to the south and 21% ground albedo, the year-wide average bifacial gain was determined to be 10.5%. An increase of the ground albedo to 79% improved the bifacial gain to 33.3%. During the same period, the horizontal single-axis tracker yielded an energy gain of 15.8%.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2931
Author(s):  
Kwan Hong Min ◽  
Taejun Kim ◽  
Min Gu Kang ◽  
Hee-eun Song ◽  
Yoonmook Kang ◽  
...  

Since the temperature of a photovoltaic (PV) module is not consistent as it was estimated at a standard test condition, the thermal stability of the solar cell parameters determines the temperature dependence of the PV module. Fill factor loss analysis of crystalline silicon solar cell is one of the most efficient methods to diagnose the dominant problem, accurately. In this study, the fill factor analysis method and the double-diode model of a solar cell was applied to analyze the effect of J01, J02, Rs, and Rsh on the fill factor in details. The temperature dependence of the parameters was compared through the passivated emitter rear cell (PERC) of the industrial scale solar cells. As a result of analysis, PERC cells showed different temperature dependence for the fill factor loss of the J01 and J02 as temperatures rose. In addition, we confirmed that fill factor loss from the J01 and J02 at elevated temperature depends on the initial state of the solar cells. The verification of the fill factor loss analysis was conducted by comparing to the fitting results of the injection dependent-carrier lifetime.


Sign in / Sign up

Export Citation Format

Share Document