scholarly journals Application of Radiation Technology in Removing Endocrine Micropollutants from Waters and Wastewaters—A Review

2021 ◽  
Vol 11 (24) ◽  
pp. 12032
Author(s):  
Anna Bojanowska-Czajka

Advanced Oxidation Processes (AOPs) are increasingly being adopted as a post-treatment after conventional wastewater treatment, mainly due to the efficient removal of biodegradable organic micropollutants. Endocrine disruptors are a specific group of such micropollutants. Many scientific studies demonstrate their extremely harmful effects on living organisms, even at low concentrations in water and wastewater. AOPs based on the generation of reactive species using radiation technologies, these being gamma radiation and electron beam, are still not being used to their full potential. This publication presents the application possibilities of using ionizing radiation for the degradation of selected endocrine micropollutants in water and wastewater.

2020 ◽  
Vol 598 ◽  
pp. 117672 ◽  
Author(s):  
Noman Khalid Khanzada ◽  
Muhammad Usman Farid ◽  
Jehad A. Kharraz ◽  
Jungwon Choi ◽  
Chuyang Y. Tang ◽  
...  

Author(s):  
João Marcos Pereira Galúcio ◽  
Sorrel Godinho Barbosa de Souza ◽  
Arthur Abinader Vasconcelos ◽  
Alan Kelbis Oliveira Lima ◽  
Kauê Santana da Costa ◽  
...  

: Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1–100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.


2016 ◽  
Vol 5 (6) ◽  
pp. 258-270
Author(s):  
Santhi Raju Pilli ◽  
Tamal Banerjee ◽  
Kaustubha Mohanty

Presence of endocrine disruptors in water and wastewater pose a serious threat to all living organisms. The removal of such disruptors is a major challenge especially most of the time they are present in trace amounts. Several technologies were tested to see if 100% removal can be achieved. Most of the existing technologies failed to achieve the target and have their own limitations. Membrane technology and especially liquid membrane technology has of late generated extreme interest among the researchers working with pollutants in trace amounts. In this work, experiments on three endocrine disruptors such as BPA, PCP and ES are carried out using supported ionic liquid membranes to see their removal efficiencies. The effects of various process parameters were studied to optimize them.


Author(s):  
Nurazim Ibrahim ◽  
Sharifah Farah Fariza Syed Zainal ◽  
Hamidi Abdul Aziz

The presence of hazardous micropollutants in water and wastewater is one of the main concerns in water management system. This micropollutant exists in a low concentration, but there are possible hazards to humans and organisms living in the water. Moreover, its character that is recalcitrant to microbiological degradation makes it difficult to deal with. Advanced oxidation processes (AOPs) are efficient methods to remove low concentration micropollutants. AOPs are a set of processes consisting the production of very reactive oxygen species which able to destroy a wide range of organic compounds. The main principal mechanism in UV-based radical AOP treatment processes is the use ultraviolet light to initiate generation of hydroxyl radicals used to destroy persistent organic pollutants. Therefore, this chapter presents an overview on the principle of radical oxidant species generation and degradation mechanism by various type of UV based AOP in treating contaminants present in water and wastewater. The current application and possible improvement of the technology is also presented in this chapter.


Author(s):  
Gina Stewart

The process of cleaning one item invariably involves making something else dirty. Whether that something else is an organic or halogenated solvent, soapy water, or a rag, we seldom address the dirtying that accompanies any cleaning process. If we are to achieve environmentally benign cleaning, we must look at the life cycle of solvents employed for cleaning, including the potential for recycling, reuse, or release into the environment. Truly “green” cleaning processes not only minimize the amount of waste generated; but also they prevent the dispersal of that waste into large amounts of solvent, water, soil, or air. Dense-phase carbon dioxide is a great cleaning solvent from a pollution-prevention viewpoint. By-product CO2 generated by other industrial processes can be captured, so it is not necessary to generate CO2 specifically for cleaning. Spills of CO2 will not contaminate groundwater or create a need for soil remediation. Carbon dioxide even has advantages for the work environment, since no chronic, harmful effects are known from repeated inhalation of low concentrations of CO2. The barriers to using CO2 as a cleaning solvent have centered around two issues: the expense of high-pressure equipment and the poor solubility of many contaminants in CO2. Micell Technologies, Inc., based in Raleigh, NC, has addressed the equipment issue by using liquid CO2 just below ambient temperature (∼18–22 °C) and vapor pressure (∼50 bar). The equipment needed to contain this pressure is considerably less expensive than that needed for supercritical CO2 processes. As for the second barrier, Micell has surfactant packages that enhance the ability of CO2 to dissolve many contaminants commonly found on clothes or on metal parts. Micell is in the process of designing and bringing to market integrated CO2 solutions, including equipment and appropriate chemistries, to replace the organic solvents or water traditionally used in garment dry cleaning, metal degreasing, and textile processing. Dry cleaning is a bit of a misnomer, in that clothes are cleaned in a liquid solvent. “Dry” simply means that exposure of a garment, such as a wool suit or silk blouse, to water is minimized to prevent damage to hydrophilic fibers.


2019 ◽  
Vol 39 (4) ◽  
pp. 367-395 ◽  
Author(s):  
Matthew L. Hall ◽  
Wyatte C. Hall ◽  
Naomi K. Caselli

Deaf and Hard of Hearing (DHH) children need to master at least one language (spoken or signed) to reach their full potential. Providing access to a natural sign language supports this goal. Despite evidence that natural sign languages are beneficial to DHH children, many researchers and practitioners advise families to focus exclusively on spoken language. We critique the Pediatrics article ‘Early Sign Language Exposure and Cochlear Implants’ (Geers et al., 2017) as an example of research that makes unsupported claims against the inclusion of natural sign languages. We refute claims that (1) there are harmful effects of sign language and (2) that listening and spoken language are necessary for optimal development of deaf children. While practical challenges remain (and are discussed) for providing a sign language-rich environment, research evidence suggests that such challenges are worth tackling in light of natural sign languages providing a host of benefits for DHH children – especially in the prevention and reduction of language deprivation.


Sign in / Sign up

Export Citation Format

Share Document