scholarly journals Statistical Modelling for the Source Rock Parameters of the Montney Formation, NE British Columbia, Canada

2021 ◽  
Vol 12 (1) ◽  
pp. 267
Author(s):  
Azzam Barham ◽  
Mohd Suhaili Ismail ◽  
Maman Hermana

Hydrocarbons in self-sourced reservoirs are determined by the concentration and maturation of organic matter in sediments. As a result, lowering risk in unconventional resource research and development requires knowledge of hydrocarbon potentiality factors. The geochemical data for the Montney Formation samples studied suggest that it is a fair to good source rock with type IV kerogen that can generate gas in general. The statistical modelling of the analyzed data reveals a valuable technique for identifying characteristics, clusters, and linkages that affect source rock assessment. The Spearman’s correlation coefficient showed a good positive correlation between the total organic carbon (TOC) and free hydrocarbons (S1), generating potential (S2), and potential yield (GP). There was a weak correlation with the maturity index (Tmax) and hydrogen index (HI) and a highly negative correlation between the TOC and oxygen index (OI). On the other hand, the principal component analysis (PCA) showed the presence of three factors affecting the source rock evaluation. Factor 1 included TOC, S1, and S2, which are related to organic richness and hydrocarbon potentiality; factor 2 contained the production index (PI), and the generated CO2 (S3) was related to the organic matter source. Factor 3 included the Tmax and HI related to the type of organic matter and thermal maturity. In addition, the TwoStep cluster analysis separated the source rock in the study area into two major groups. Cluster 1 is characterized relatively by high HI, TOC, S1, S2, and PI, with Tmax < 455 °C indicating good source rock in the mature level with the capability to generate little oil and condensate gas. Cluster 2 is characterized by relatively low HI, TOC, S1, S2, and PI, with Tmax > 455 °C, indicating an over-mature source rock in the dry gas window.

Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Ed-Haun Chang ◽  
Isheng Jason Tsai ◽  
Shih-Hao Jien ◽  
Guanglong Tian ◽  
Chih-Yu Chiu

Biogeographic separation has been an important cause of faunal and floral distribution; however, little is known about the differences in soil microbial communities across islands. In this study, we determined the structure of soil microbial communities by analyzing phospholipid fatty acid (PLFA) profiles and comparing enzymatic activities as well as soil physio-chemical properties across five subtropical granite-derived and two tropical volcanic (andesite-derived) islands in Taiwan. Among these islands, soil organic matter, pH, urease, and PLFA biomass were higher in the tropical andesite-derived than subtropical granite-derived islands. Principal component analysis of PLFAs separated these islands into three groups. The activities of soil enzymes such as phosphatase, β-glucosidase, and β-glucosaminidase were positively correlated with soil organic matter and total nitrogen. Redundancy analysis of microbial communities and environmental factors showed that soil parent materials and the climatic difference are critical factors affecting soil organic matter and pH, and consequently the microbial community structure.


2020 ◽  
Vol 81 (8) ◽  
pp. 1786-1796 ◽  
Author(s):  
Sikelelwa N. Ndiweni ◽  
Michael Chys ◽  
Nhamo Chaukura ◽  
Stijn W. H. Van Hulle ◽  
Thabo T. I. Nkambule

Abstract The increase of fluorescent natural organic matter (fNOM) fractions during drinking water treatment might lead to an increased coagulant dose and filter clogging, and can be a precursor for disinfection by-products. Consequently, efficient fNOM removal is essential, for which characterisation of fNOM fractions is crucial. This study aims to develop a robust monitoring tool for assessing fNOM fractions across water treatment processes. To achieve this, water samples were collected from six South African water treatment plants (WTPs) during winter and summer, and two plants in Belgium during spring. The removal of fNOM was monitored by assessing fluorescence excitation–emission matrices datasets using parallel factor analysis. The removal of fNOM during summer for South African WTPs was in the range 69–85%, and decreased to 42–64% in winter. In Belgian WTPs, fNOM removal was in the range 74–78%. Principal component analysis revealed a positive correlation between total fluorescence and total organic carbon (TOC). However, TOC had an insignificant contribution to the factors affecting fNOM removal. Overall, the study demonstrated the appearance of fNOM in the final chlorinated water, indicating that fNOM requires a customised monitoring technique.


Author(s):  
Martin Lindegren ◽  
Anna Rindorf ◽  
Tommy Norin ◽  
David Johns ◽  
Mikael van Deurs

Abstract Growth is a fundamental physiological process influencing the state and dynamics of fish stocks, yet the physical and biological conditions affecting individual weight and growth throughout ontogeny are poorly known and often unaccounted for in fisheries management. This is rather surprising given that changes in growth have strong direct effects on the total biomass and potential yield derived from any given stock. In this study, we investigate the underlying factors affecting fish growth throughout the life span of cohorts using statistical modelling and long-term observational data on sprat (Sprattus sprattus), a commercially and ecologically important small-pelagic fish species across European seas. Our results demonstrate a negative relationship between total abundance and weight, as well as a positive and dome-shaped relationship between temperature and zooplankton abundance (i.e. food availability), respectively. Furthermore, we demonstrate how such improved knowledge and understanding of the underlying factors affecting weight and growth could be accounted for in future assessment models, by including these considerations into short-term forecast simulations. This, in turn, would provide a stronger scientific basis for management advice and ensure the sustainability and profitability of fisheries, particularly on small and commercially valuable pelagic species with pronounced spatio-temporal variability in weight and growth.


Author(s):  
David M. Katithi ◽  
David O. Opar

ABSTRACT The work reports an in-depth review of bulk and molecular geochemical data to determine the organic richness, kerogen type and thermal maturity of the Lokhone and the stratigraphically deeper Loperot shales of the Lokichar basin encountered in the Loperot-1 well. Oil-source rock correlation was also done to determine the source rocks’ likelihood as the source of oil samples obtained from the well. A combination of literature and geochemical data analyses show that both shales have good to excellent potential in terms of organic and hydrogen richness to act as conventional petroleum source rocks. The Lokhone shales have TOC values of 1.2% to 17.0% (average 5.16%) and are predominantly type I/II organic matter with HI values in the range of 116.3 – 897.2 mg/g TOC. The Lokhone source rocks were deposited in a lacustrine depositional environment in episodically oxic-dysoxic bottom waters with periodic anoxic conditions and have Tmax values in addition to biomarker signatures typical of organic matter in the mid-mature to mature stage with respect to hydrocarbon generation and immature for gas generation with Ro values of 0.51 – 0.64%. The Loperot shales were shown to be possibly highly mature type II/III source rocks with TOC values of 0.98% – 3.18% (average 2.4%), HI of 87 – 115 mg/g TOC and Ro of 1.16 – 1.33%. The Lokhone shale correlate well with the Loperot-1 well oils and hence is proposed as the principal source rock for the oils in the Lokichar basin. Although both source rocks have good organic richness to act as shale gas plays, they are insufficiently mature to act as shale gas targets but this does not preclude their potential deeper in the basin where sufficient gas window maturities might have been attained. The Lokhone shales provide a prospective shale oil play if the reservoir suitability to hydraulic fracturing can be defined. A basin wide study of the source rocks thickness, potential, maturation and expulsion histories in the Lokichar basin is recommended to better understand the present-day distribution of petroleum in the basin.


2013 ◽  
Vol 151 (3) ◽  
pp. 394-413 ◽  
Author(s):  
A. MARAVELIS ◽  
G. MAKRODIMITRAS ◽  
N. PASADAKIS ◽  
A. ZELILIDIS

AbstractThe Western flanks of the Hellenic Fold and Thrust Belt are similar to the nearby prolific Albanian oil and gas provinces, where commercial volumes of oil have been produced. The Lower Oligocene to Lower–Middle Miocene slope series at this part of the Hellenic Fold and Thrust Belt provides a unique opportunity to evaluate the anatomy and source rock potential of such a system from an outcrop perspective. Slope progradation is manifested as a vertical pattern exhibiting an increasing amount of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The palaeoflow trend exhibits a western direction during the Late Oligocene but since the Early Miocene has shifted to the East. The occurrence of reliable index species allowed us to recognize several nannoplankton biozones (NP23 to NN5). Organic geochemical data indicate that the containing organic matter is present in sufficient abundance and with good enough quality to be regarded as potential source rocks. The present Rock-Eval II pyrolytic yields and calculated values of hydrogen and oxygen indexes imply that the recent organic matter type is of type III kerogen. A terrestrial origin is suggested and is attributed to short transportation distance and accumulation at rather low water depth. The succession is immature with respect to oil generation and has not experienced high temperature during burial. However, its eastern down-slope equivalent deep-sea mudstone facies should be considered as good gas-prone source rocks onshore since they may have experienced higher thermal evolution. In addition, they may have improved organic geochemical parameters because there is no oxidization of the organic matter.


2013 ◽  
Vol 703 ◽  
pp. 127-130
Author(s):  
Hui Ting Hu ◽  
Hai Tao Xue ◽  
Yi Han Wang ◽  
Xiao Dong Chen

In order to evaluate the exploration potential of CamckAral sea zones, the geological and geochemical data, qualitative appraisement and quantitative calculation method are used to study the Middle Jurassic source rock conditions of circumjacent depressions of CamckAral sea zones. This research indicates that: the Middle Jurassic source rock in these depressions are relatively development, with type II2 and III organic matter which have a higher gas generation potential; and organic carbon content is relatively higher; the thermal evolution of the organic matter has reached maturation stage. It means that the north Camck zone and water area of Aral sea have more exploration potential.


2014 ◽  
Vol 628 ◽  
pp. 366-371
Author(s):  
Guang Zeng Wang ◽  
Zhi Ping Wu ◽  
Chao Liu ◽  
Yang Hu

Based on the fault activity, geochemical data and predecessor research results on tectonic subsidence and source rock of Bohai Sea Area, this paper took Bohai Sea Area as an example to compare its structural activity factors with its source rock indexes, and then to explore fault activity’s controlling effect on source rock. And the results shows: source rock thickness is mainly controlled by fault throw of boundary fault, but it is also be influenced by others factors in different stages; Fault activity rate, climatic conditions etc. factors are all key factors influencing organic matter percentage in source rock. And the key factors may change in different stages; Present organic matter maturities in different source rock are controlled by their present tectonic subsidence. And the bigger the tectonic subsidence, the higher the maturity; Source rock qualities on different structural belts are influenced by their distances away from the boundary fault, and the closer, the better. But quality on central uplift belt is worse than that on sub-sag belt flank.


2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


2021 ◽  
Vol 10 (5) ◽  
pp. 348
Author(s):  
Zhenbo Du ◽  
Bingbo Gao ◽  
Cong Ou ◽  
Zhenrong Du ◽  
Jianyu Yang ◽  
...  

Black soil is fertile, abundant with organic matter (OM) and is exceptional for farming. The black soil zone in northeast China is the third-largest black soil zone globally and produces a quarter of China’s commodity grain. However, the soil organic matter (SOM) in this zone is declining, and the quality of cultivated land is falling off rapidly due to overexploitation and unsustainable management practices. To help develop an integrated protection strategy for black soil, this study aimed to identify the primary factors contributing to SOM degradation. The geographic detector, which can detect both linear and nonlinear relationships and the interactions based on spatial heterogeneous patterns, was used to quantitatively analyze the natural and anthropogenic factors affecting SOM concentration in northeast China. In descending order, the nine factors affecting SOM are temperature, gross domestic product (GDP), elevation, population, soil type, precipitation, soil erosion, land use, and geomorphology. The influence of all factors is significant, and the interaction of any two factors enhances their impact. The SOM concentration decreases with increased temperature, population, soil erosion, elevation and terrain undulation. SOM rises with increased precipitation, initially decreases with increasing GDP but then increases, and varies by soil type and land use. Conclusions about detailed impacts are presented in this paper. For example, wind erosion has a more significant effect than water erosion, and irrigated land has a lower SOM content than dry land. Based on the study results, protection measures, including conservation tillage, farmland shelterbelts, cross-slope ridges, terraces, and rainfed farming are recommended. The conversion of high-quality farmland to non-farm uses should be prohibited.


Author(s):  
Jeonghyun Kim ◽  
Yeseul Kim ◽  
Sung Eun Park ◽  
Tae-Hoon Kim ◽  
Bong-Guk Kim ◽  
...  

AbstractIn Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and behaviours of dissolved organic matter (DOM) in the coastal water are still unknown. To decipher characteristics of organic pollution, we compared physicochemical parameters with spectral optical properties near the coastal aquafarms in Jeju Island. Absorption spectra were measured to calculate the absorption coefficient, spectral slope coefficient, and specific UV absorbance. Fluorescent DOM was analysed using fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured using high-temperature catalytic oxidation. The DOC concentration near the discharge outlet was twice higher than that in natural groundwater, and the TDN concentration exponentially increased close to the outlet. These distribution patterns indicate that aquafarms are a significant source of DOM. Herein, principal component analysis was applied to categorise the DOM origins. There were two distinct groups, namely, aquaculture activity for TDN with humic-like and high molecular weights DOM (PC1: 48.1%) and natural biological activity in the coastal water for DOC enrichment and protein-like DOM (PC2: 18.8%). We conclude that the aquafarms significantly discharge organic nitrogen pollutants and provoke in situ production of organic carbon. Furthermore, these findings indicate the potential of optical techniques for the efficient monitoring of anthropogenic organic pollutants from aquafarms worldwide.


Sign in / Sign up

Export Citation Format

Share Document