scholarly journals Effect of the Extended Rigid Flapping Trailing Edge Fringe on an S833 Airfoil

2022 ◽  
Vol 12 (1) ◽  
pp. 444
Author(s):  
Hongtao Yu ◽  
Zifeng Yang

A 2D numerical simulation was conducted to investigate the effect of an extended rigid trailing edge fringe with a flapping motion on the S833 airfoil and its wake flow field, as an analogy of an owl’s wing. This study aims to characterize the influence of the extended flapping fringe on the aerodynamic performance and the wake flow characteristics downstream of the airfoil. The length (Le) and flapping frequencies (fe) of the fringe are the key parameters that dominate the impact on the airfoil and the flow field, given that the oscillation angular amplitude is fixed at 5°. The simulation results demonstrated that the airfoil with an extended fringe of 10% of the chord at a flapping frequency of fe = 110 Hz showed a substantial effect on the pressure distribution on the airfoil and the flow characteristics downstream of the airfoil. An irregular vortex street was predicted downstream, thus causing attenuations of the vorticities, and shorter streamwise gaps between each pair of vortices. The extended flapping fringe at a lower frequency than the natural shedding vortex frequency can effectively break the large vortex structure up into smaller scales, thus leading to an accelerated attenuation of vorticities in the wake.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Shicong Li ◽  
Xiaoyu Wang ◽  
Jing He ◽  
Mei Lin ◽  
Hanbing Ke

An experimental study is carried out to investigate the flow characteristics of the trailing edge of the horizontal vanes mounted at the branch entrance of a T-junction duct by means of particle image velocimetry (PIV). The measured region starts at the trailing edge of the vanes and ends at about 1.26D (hydraulic diameter) length at downstream of the branch duct. The velocity field is obtained across a number of vertical height planes (z/D = ±0.2, 0, and −0.4) under different flow conditions (cross velocity: uc = 30–50 m/s; velocity ratio: R = 0.08–0.18). The instantaneous flow results show that Kelvin-like vortices with counter-clockwise direction appear at the heights of z/D = ±0.2 and 0, and that a separation bubble is formed at the upper wall of the branch duct at the same heights, respectively. As for near wall z/D = −0.4, one large vortex is observed at the downstream channel, but the separation bubble vanishes as the branching Reynolds number is increased to 3.6 × 104. The time-average flow field is slightly different from that of instantaneous flow field. In addition, the vorticity distribution indicates that two significant vortex sheet layers with negative and positive values are found at the high velocity ratio or high cross velocity, and the normalized vorticity strength increases with increasing velocity ratio and decreases with increasing cross velocity except at z/D = −0.4.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
David Demel ◽  
Mohsen Ferchichi ◽  
William D. E. Allan ◽  
Marouen Dghim

This work details an experimental investigation on the effects of the variation of flap gap and overlap sizes on the flow field in the wake of a wing-section equipped with a trailing edge Fowler flap. The airfoil was based on the NACA 0014-1.10 40/1.051 profile, and the flap was deployed with 40 deg deflection angle. Two-dimensional (2D) particle image velocimetry (PIV) measurements of the flow field in the vicinity of the main wing trailing edge and the flap region were performed for the optimal flap gap and overlap, as well as for flap gap and overlap increases of 2% and 4% chord beyond optimal, at angles of attack of 0 deg, 10 deg, and 12 deg. For all the configurations investigated, the flow over the flap was found to be fully stalled. At zero angle of attack, increasing the flap gap size was found to have minor effects on the flow field but increased flap overlap resulted in misalignment between the main wing boundary layer (BL) flow and the slot flow that forced the flow in the trailing edge region of the main wing to separate. When the angle of attack was increased to near stall conditions (at angle of attack of 12 deg), increasing the flap gap was found to energize and improve the flow in the trailing edge region of the main wing, whereas increased flap overlap further promoted flow separation on the main wing suction surface possibly steering the wing into stall.


Author(s):  
Zifeng Yang ◽  
Anand Gopa Kumar ◽  
Hirofumi Igarashi ◽  
Hui Hu

An experimental study was conducted to quantify the flow characteristics of wall jets pertinent to trailing edge cooling of turbine blades. A high-resolution stereoscopic PIV system was used to conduct detailed flow field measurements to quantitatively visualize the evolution of the unsteady vortex and turbulent flow structures in cooling wall jet streams and to quantify the dynamic mixing process between the cooling wall jet streams and the main stream flows. The detailed flow field measurements are correlated with the adiabatic cooling effectiveness maps measured by using pressure sensitive paint (PSP) technique to elucidate underlying physics in order to improve cooling effectiveness to protect the critical portions of turbine blades from the harsh ambient conditions.


Author(s):  
Giorgio Pavesi ◽  
Guido Ardizzon ◽  
Giovanna Cavazzini

To improve understanding of the phenomena of stall in centrifugal pumps, extensive research was conducted to investigate the impact on flow field instabilities and the noise generated in a pump equipped with a diffuser. A pump fitted with a vaneless diffuser and a return channel was used as the test model. Flow velocity was measured at the pump and at diffuser inflow to establish a link between the flow field structure and acoustic radiation. Activity was based upon the cross spectral analysis of output signals from piezoelectric transducers placed flush with the wall at the inflow and outflow of the pump, and 3D fully-viscous unsteady computations. Results showed the jet-wake flow pattern induced an unstable vortex, which influenced flow discharging from the adjacent passage and destabilised jet-wake flow in the passage. Consequently, periodic fluctuations were seen at impeller discharge which were found to be coherent from blade to blade and possessed a rich harmonic content. With the exception of the total pressure in the far field, the pressure frequency scattering by the pump was found to be consistent when compared to the experimental and analytic results.


1996 ◽  
Author(s):  
Michael D. Hathaway ◽  
Jerry R. Wood

CFD codes capable of utilizing multi-block grids provide capability to analyze the complete geometry of centrifugal compressors including, among others, multiple splitter rows, tip clearance, blunt trailing edges, fillets, and slots between moving and stationary surfaces. Attendant with this increased capability is potentially increased grid setup time and more computational overhead — CPU time and memory requirements — with the resultant increase in “wall clock” time to obtain a solution. If the increase in “difficulty” of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor’s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use then modeling of certain features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: 1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. 2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. 3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available it should be used as it has the propensity for enabling better predictions than a single block code which requires modeling of certain geometry features. If a single block code must be used some guidance is offered for modeling those geometry features which can’t be directly gridded.


2012 ◽  
Vol 6 (6) ◽  
pp. 1228-1235
Author(s):  
Eleni C. Douvi ◽  
Dionissios P. Margaris

The study of the prediction of the flow field and aerodynamic characteristics of a NACA0012 airfoil in simulated heavy rain, using a computational fluid dynamics code is presented. The simulation of rain is accomplished by using the two-phase flow Discrete Phase Model, which is available in the CFD code. Spherical particles are tracked through the two-dimensional, incompressible air flow field over a NACA0012 airfoil, at a simulated rain rate of 1000 mm/h and operating at Reynolds numbers Re=1×106 and Re=3×106. To validate the CFD developed model, the results are compared with well-established and published experimental data, showing good agreement. The aim of the work was to show the behavior of the airfoil at these conditions and to establish a verified solution method. Lift and drag coefficients are computed at various angles of attack in both dry and wet conditions and the results are compared to show the effects of rain at airfoil performance. The impact of rain on wind turbine performance is also analyzed. It is concluded that rain causes degradation of aerodynamic performance, especially lift is decreased and drag is increased.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
L. Porreca ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper presents a comprehensive study of the effect of shroud design in axial turbine aerodynamics. Experimental measurements and numerical simulations have been conducted on three different test cases with identical blade geometry and tip clearances but different shroud designs. The first and second test cases are representative of a full shroud and a nonaxisymmetric partial shroud geometry while the third test case uses an optimized partial shroud. Partial shrouds are sometimes used in industrial application in order to benefit from the advantage of shrouded configuration, as well as reduce mechanical stress on the blades. However, the optimal compromise between mechanical considerations and aerodynamic performances is still an open issue due to the resulting highly three-dimensional unsteady flow field. Aerodynamic performance is measured in a low-speed axial turbine facility and shows that there are clear differences between the test cases. In addition, steady and time resolved measurements are performed together with computational analysis in order to improve the understanding of the effect of the shroud geometry on the flow field and to quantify the sources of the resultant additional losses. The flow field analysis shows that the effect of the shroud geometry is significant from 60% blade height span to the tip. Tip leakage vortex in the first rotor is originated in the partial shroud test cases while the full shroud case presents only a weak indigenous tip passage vortex. This results in a significant difference in the secondary flow development in the following second stator with associated losses that varies by about 1% in this row. The analysis shows that the modified partial shroud design has improved considerably the aerodynamic efficiency by about 0.6% by keeping almost unchanged the overall weight of this component, and thus blade root stresses. The work, therefore, presents a comprehensive flow field analysis and shows the impact of the shroud geometry in the aerodynamic performance.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Zhe Xie ◽  
Yangwei Liu ◽  
Xiaohua Liu ◽  
Lipeng Lu ◽  
Xiaofeng Sun

The eigenvalue approach is a recently developed compressor stability model used to predict stall onset. In this model, the flow field from a Reynolds-averaged Navier–Stokes (RANS) simulation provides the basic flow. This paper presents the effect of the RANS methods (including the computational grid, the turbulence model, and the spatial discretization scheme) on the eigenvalue and investigates the most influencing flow structures to the eigenvalue. The test compressor was the transonic compressor of NASA Rotor 37. Three individual meshes with different grid densities were used to validate the grid independence, and the results indicated that RANS simulation and eigenvalue calculation obtain grid independence at the same grid density. Then, the effect of four turbulence models (including Spalart–Allmaras (SA) turbulence model, two different k–ε models with the extended wall function model (EWFKE), and the Yang–Shih model (YSKE), and k–ω shear stress transport (SST) model), and three spatial discretization schemes (the central scheme, the flux difference splitting (FDS) scheme, and the symmetric total variation diminishing (STVD)) was also studied. Further investigation showed that the SA turbulence model combined with the STVD scheme provided the best stall point prediction, with a relative error of 0.05%. Detailed exploration of the three-dimensional flow field revealed that there were two flow patterns near the blade tip necessary for precisely predicting stall onset: the flow blockage generated by the shockwave-tip leakage vortex (TLV) interaction, and the trailing edge separation and corresponding wake flow. The effect of the blockage was greater than the effect of the trailing edge flow.


Author(s):  
C. Brüggemann ◽  
M. Schatz ◽  
D. M. Vogt ◽  
F. Popig

This paper presents a numerical investigation of the impact of different part-span connector (PSC) configurations on the flow field in a turbine passage. For this purpose a linear cascade based on a profile section of a typical reaction blade used in industrial steam turbines was modeled and 3D simulations with varying size, shape, axial position and yaw incidence angle of the PSC were performed. Air modeled as ideal gas was chosen as the working fluid. Apart from a sensitivity study of the above mentioned parameters on the losses incurred by PSCs based on the numerical results, a detailed investigation of the flow field was carried out to highlight the interaction with the incoming flow. Moreover, the variation of the flow field behind the cascade was examined to assess the impact on the subsequent blade row. It is shown that depending on the geometry and the position of the PSC, different vortex structures are established in the wakes. These wakes interact with the main flow in the passage, thus influencing both dissipation and the downstream flow field. Major changes of the wake flow character and extent could be observed. Comparisons of the CFD results against commonly used analytical loss correlations for PSC revealed large differences, especially as certain parameters such as the yaw incidence angle are generally not considered by the latter. As a consequence, the analytical models need to be improved and extended. The results of this study indicate that the possibility of reducing the losses incurred by PSC by careful selection of design parameters within the design space dictated by its mechanical constraints.


Sign in / Sign up

Export Citation Format

Share Document