scholarly journals A Full Coupled Thermal–Hydraulic–Chemical Model for Heterogeneity Rock Damage and Its Application in Predicting Water Inrush

2019 ◽  
Vol 9 (11) ◽  
pp. 2195 ◽  
Author(s):  
Weitao Liu ◽  
Jiyuan Zhao ◽  
Ruiai Nie ◽  
Yifan Zeng ◽  
Baichao Xu ◽  
...  

A coupled thermal–hydraulic–chemical (THC) model was carried out in this paper to study the influence of rock heterogeneity and the coupling effect of temperature, groundwater, and hydrochemistry on rock damage. Firstly, the hydrochemical and hydraulic erosion equations were established. The equations of the coupled THC model were established by combining the hydrochemical and hydraulic erosion equations, the flow equations, and the heat transfer equations. Weibull distribution was adopted to govern the heterogeneity of initial rock porosity distribution. Secondly, the influence of the hydrochemistry, the temperature and the initial porosity heterogeneity on porosity and fluid velocity change was studied. Then the rock damage rule changed with time at different pH values and temperature was studied. Finally, an actual deep coal mine model was established to apply the THC model to predict water inrush. Results indicate that: (1) The average porosity and average fluid velocity approximately show linear growth and exponential growth with time, respectively, and their growth rates increase with decreasing pH value and increasing temperature in a certain acidity and temperature range. (2) The increase of initial porosity heterogeneity has little influence on porosity change, but it can increase the fluid velocity growth rate. The porosity heterogeneity and fluid velocity heterogeneity approximately show exponential growth with increasing time, and the rock heterogeneity growth contributes to form cracks. The increase of temperature and decrease of pH value have little influence on the porosity heterogeneity, but they can increase the growth rate of the fluid velocity heterogeneity. (3) The rock damage shows linear growth with time, and its growth rate increases with decreasing pH value and increasing temperature in a certain acidity range and temperature range. (4) The increase of rock heterogeneity can increase the possibility of water inrush.

1984 ◽  
Vol 49 (10) ◽  
pp. 2320-2331 ◽  
Author(s):  
Miroslav Březina ◽  
Martin Wedell

Reduction of oxygen and oxidation of hydrogen peroxide at the dropping mercury electrode are electrochemical processes strongly influenced both by the pH value and the anions in solution. With decreasing pH, both processes become irreversible, especially in the presence of anions with a negative φ2 potential of the diffusion part of the double layer. In the case of irreversible oxygen reduction, the concept that the rate-controlling step of the electrode process is the acceptance of the first electron with the formation of the superoxide anion, O2-, was substantiated. Oxidation of hydrogen peroxide becomes irreversible at a lower pH value than the reduction of oxygen. The slowest, i.e. rate-controlling step of the electrode process in borate buffers at pH 9-10 is the transfer of the second electron, i.e. oxidation of superoxide to oxygen.


Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 148
Author(s):  
Hirokazu Fukumoto ◽  
Kazuhiko Ishihara ◽  
Shin-Ichi Yusa

A mixed aqueous solution of hydrophilic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(acrylic acid) (PAAc) becomes cloudy under acidic conditions at room temperature. The pendant carboxylic acid groups in PAAc form hydrogen bonds with the ester and phosphate groups in PMPC. While the polymers aggregate under acidic conditions, neither one associate under basic conditions because of the deprotonation of the pendant carboxy groups in PAAc. We observed that the interpolymer complex formed from PMPC, and PAAc was dissociated in aqueous solutions with increasing temperature, which is an upper critical solution temperature behavior. With increasing temperature, the molecular motion increased to dissociate the interpolymer complex. The phase transition temperature increased with increasing polymer and salt concentrations, and with decreasing pH.


1993 ◽  
Vol 67 (6) ◽  
pp. 922-934 ◽  
Author(s):  
Robert J. Elias ◽  
Dong-Jin Lee

Microborings in the Late Ordovician tabulate corals Catenipora rubra (a halysitid) and Manipora amicarum (a cateniform nonhalysitid) and in an epizoic solitary rugose coral differ from nearly all of those previously reported in Paleozoic corals. These microborings were formed within the coralla by endolithic algae and fungi located beneath living polyps. Comparable structures in the Late Ordovician tabulate Quepora ?agglomeratiformis (a halysitid) represent algal microborings, not spicules, and halysitids are corals, not sponges as suggested by Kaźmierczak (1989).Endolithic algae in cateniform tabulates relied primarily on light entering through the outer walls of the ranks rather than through the polyps; lacunae within coralla permitted appropriate levels of light to reach many corallites. The direction of boring was determined by corallum microstructure and possibly also by the distribution of organic matter within the skeleton. There is an apparent inverse correlation between boring activity and coral growth rate.The location and relative abundance of pyritized microborings within calcareous coralla can be established quantitatively and objectively from electron microprobe determinations of weight percent sulfur along appropriate traverses of the coral skeleton. The distribution of such microborings in Catenipora rubra and Manipora amicarum is comparable to algal banding in modern corals; this is the first report of such banding in the interiors of Paleozoic corals. Change in the intensity of boring within each corallum was evidently a response to variation in the linear growth rate of the coral, or to fluctuation in an environmental factor (perhaps light intensity) that could control both algal activity and growth rate in these corals. Change in the algal boring intensity and linear growth rate of the coral was generally but not always seasonal and usually but not invariably associated with change in the density of coral skeletal deposition.Cyclic bands of boring abundance maxima within fossil colonial corals provide a measure of annual linear growth comparable to the widely accepted method based on skeletal density bands. Algal bands are more sporadically developed than density bands within and among coralla, thus increasing the difficulty of interpretation. Fluctuations in the abundance of algal microborings apparently provide a detailed record of changes in the linear growth rate of colonies and of individuals within colonies. Combined analyses of microboring abundance and skeletal density will contribute significantly to our understanding of the biological and environmental factors involved in endolithic activity and coral growth.


2021 ◽  
Vol 12 (6) ◽  
pp. 7239-7248

The novel coronavirus, recognized as COVID-19, is the cause of an infection outbreak in December 2019. The effect of temperature and pH changes on the main protease of SARS-CoV-2 were investigated using all-atom molecular dynamics simulation. The obtained results from the root mean square deviation (RMSD) and root mean square fluctuations (RMSF) analyses showed that at a constant temperature of 25℃ and pH=5, the conformational change of the main protease is more significant than that of pH=6 and 7. Also, by increasing temperature from 25℃ to 55℃ at constant pH=7, a remarkable change in protein structure was observed. The radial probability of water molecules around the main protease was decreased by increasing temperature and decreasing pH. The weakening of the binding energy between the main protease and water molecules due to the increasing temperature and decreasing pH has reduced the number of hydrogen bonds between the main protease and water molecules. Finding conditions that alter the conformation of the main protease could be fundamental because this change could affect the virus’s functionality and its ability to impose illness.


2021 ◽  
Vol 12 (3-2021) ◽  
pp. 141-150
Author(s):  
O.V. Smolkova ◽  

The linear growth equations and production for bivalve Mya arenaria (Linne, 1758) in the intertidal zone Yarnyshnaya and Zelenetskaya bays of Barents Sea are represented. Our studies have shown that length of the shell Mya reached 26.3–62.5 mm, the highest age was 11 years. Indicators of the growth rate of mollusks from Zelenetskaya Bay are significantly higher than those of mollusks from Yarnyshnaya Bay. Linear growth is described by the Bertalanfi equations: Lt = 84.27 [1–e–0.0721 (t–0.1244)] – for mollusks from Yarnyshnaya Bay, Lt = 118.49 [1–e–0.0566 (t–0.2744)] – for mollusks from Zelenetskaya Bay. Production in the intertidal zone of the Yarnyshnaya Bay was lower (44.8 g/m2 with a biomass of 330 g/m2) than in the intertidal zone of the Zelenetskaya Bay (90.5 g/m2, with a biomass of 258 g/m2). The P/V-value is the coefficient of 0.14 and 0.35, respectively.


2011 ◽  
Vol 8 (6) ◽  
pp. 12247-12283
Author(s):  
P. Sabatier ◽  
J.-L. Reyss ◽  
J. M. Hall-Spencer ◽  
C. Colin ◽  
N. Frank ◽  
...  

Abstract. Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of corals from one of the world's largest known cold-water coral reef, the Røst Reef off Norway. Two large branching framework-forming cold-water coral specimens, one Lophelia pertusa and one Madrepora oculata were collected alive at 350 m water depth from the Røst Reef at ~67° N and ~9° E. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and the corals trace element compositions were studied using ICP-QMS. Due to the different chemical behaviors of Pb and Ra in the marine environment, 210Pb and 226Ra were not incorporated the same way into the aragonite skeleton of those two cold-water corals. Thus to assess of the growth rates of both specimens we have here taken in consideration the exponential decrease of initially incorporated 210Pb as well as the ingrowth of 210Pb from the decay of 226Ra. Moreover a~post-depositional 210Pb incorporation is found in relation to the Mn-Fe coatings that could not be entirely removed from the oldest parts of the skeletons. The 226Ra activities in both corals were fairly constant, then assuming constant uptake of 210Pb through time the 210Pb-226Ra chronology can be applied to calculate linear growth rate. The 45.5 cm long branch of M. oculata reveals an age of 31 yr and a~linear growth rate of 14.4 ± 1.1 mm yr−1, i.e. 2.6 polyps per year. However, a correction regarding a remaining post-depositional Mn-Fe oxide coating is needed for the base of the specimen. The corrected age tend to confirm the radiocarbon derived basal age of 40 yr (using 14C bomb peak) with a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in Aquaria experiments under optimal growth conditions. For the 80 cm-long specimen of L. pertusa a remaining contamination of metal-oxides is observed for the middle and basal part of the coral skeleton, inhibiting similar accurate age and growth rate estimates. However, the youngest branch was free of Mn enrichment and this 15 cm section reveals a growth rate of 8 mm yr−1 (~1 polyp every two to three years). However, the 210Pb growth rate estimate is within the lowermost ranges of previous growth rate estimates and may thus reflect that the coral was not developing at optimal growth conditions. Overall, 210Pb-226Ra dating can be successfully applied to determine the age and growth rate of framework-forming cold-water corals, however, removal of post-depositional Mn-Fe oxide deposits is a prerequisite. If successful, large branching M. oculata and L. pertusa coral skeletons provide unique oceanographic archive for studies of intermediate water environmentals with an up to annual time resolution and spanning over many decades.


1955 ◽  
Vol 33 (5) ◽  
pp. 416-428 ◽  
Author(s):  
D. E. Etheridge

Cultures of Fames annosus originating in Europe could not be distinguished from those originating in North America either by colony appearance, growth rate, pH optimum, or cellulolytic activity. Three growth rate types on 2.5% malt agar were recognized and these are ascribed to individual variation rather than to host or geographical influences. Successive subculturing produced variants that fell into three growth classes. Half of the isolates displayed spontaneous, but reversible, changes in growth rate and colony appearance during subculturing and this is discussed from the standpoint of genetical and environmental influences. Cultures displaying different morphological characteristics and linear-growth rates differed little metabolically; each had a similar pH optimum ranging from 4.6 to 5.5, and each proved capable of altering the initial acidity of the medium to a reaction which was more suitable for growth. Two cultures were characterized by double pH optima at 4.6 and 5.5. Cultures having different linear-growth rates produced about the same dry-weight of mycelium on a cellulose substrate in a semisynthetic nutrient solution. On the basis of a statistical analysis of cellulose utilization by representative isolates it was impossible to distinguish between North American and European cultures.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Sydney Olson ◽  
Marniker Wijesinha ◽  
Annalise Panthofer ◽  
William Blackwelder ◽  
Gilbert R Upchurch ◽  
...  

Objective: Small abdominal aortic aneurysms (AAAs) have a low risk of rupture. Intervention is indicated when diameters exceed established thresholds. This study assessed the growth rates and patterns of AAAs over 2 years as documented on serial CT scans from the Non-Invasive Treatment of AAA Clinical Trial. Methods: 254 patients, 35 females with baseline AAA maximum transverse diameter (MTD) between 3.5-4.5 cm and 219 males with baseline MTD 3.5-5.0 cm, were included in this study. Linear regressions and segmental growth rates were used to model growth rates and patterns. Results: The yearly growth rates of AAA MTDs had a median of 0.17 cm/yr and mean of 0.19 cm/yr ± 0.14 (Figure 1). 10% of AAA displayed minimal to no growth (< 0.05 cm/yr), 62% low growth (0.05-0.25 cm/yr), 28% high growth (> 0.25 cm/yr). Baseline AAA diameter accounted for only 5.4% of growth rate variance (P<0.001, R 2 0.05). Most AAAs displayed linear growth (70%); large variations in interval growth rates occurred infrequently (3% staccato growth, 4% exponential growth); a minority of subjects’ growth patterns were not clearly classifiable (11% indeterminate-not growing, 12% indeterminate-growing) (Figure 2). No patients with baseline MTD < 4.25 cm exceeded sex-specific repair thresholds (males 0 / 92, [95% CI, 0.00-0.06]; females 0 / 25 [95% CI, 0.00-0.25]) in the course of follow-up for as long as two years. Conclusions: The majority of small AAAs exhibit linear growth; large intra-patient growth rate variations were infrequently observed over 2 years. AAA < 4.25 cm can be followed with a CT scan in 2 years with little chance of exceeding interventional MTD thresholds of 5.5 cm for men.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 39 ◽  
Author(s):  
Roger Grimshaw

The linear stability theory of wind-wave generation is revisited with an emphasis on the generation of wave groups. The outcome is the fundamental requirement that the group move with a real-valued group velocity. This implies that both the wave frequency and the wavenumber should be complex-valued, and in turn this then leads to a growth rate in the reference frame moving with the group velocity which is in general different from the temporal growth rate. In the weakly nonlinear regime, the amplitude envelope of the wave group is governed by a forced nonlinear Schrödinger equation. The effect of the wind forcing term is to enhance modulation instability both in terms of the wave growth and in terms of the domain of instability in the modulation wavenumber space. Also, the soliton solution for the wave envelope grows in amplitude at twice the linear growth rate.


Sign in / Sign up

Export Citation Format

Share Document