scholarly journals Fracture Resistance of Monolithic Zirconia Crowns on Four Occlusal Convergent Abutments in Implant Prosthesis

2019 ◽  
Vol 9 (13) ◽  
pp. 2585 ◽  
Author(s):  
Ting-Hsun Lan ◽  
Chin-Yun Pan ◽  
Pao-Hsin Liu ◽  
Mitch M.C. Chou

Adjusting implant abutment for crown delivery is a common practice during implant installation. The purpose of this study was to compare the fracture resistance and stress distribution of zirconia specimens on four occlusal surface areas of implant abutment. Four implant abutment designs [occlusal surface area (SA) SA100, SA75, SA50, and SA25] with 15 zirconia prostheses over the molar area per group were prepared for cyclic loading with 5 Hz, 300 N in a servo-hydraulic testing machine until fracture or automatic stoppage after 30,000 counts. The minimum occlusal thickness of all specimens was 0.5 mm. Four finite element models were simulated under vertical or oblique 10-degree loading to analyze the stress distribution and peak value of zirconia specimens. Data were statistically analyzed, and fracture patterns were observed under a scanning electron microscope. Cyclic loading tests revealed that specimen breakage had moderately strong correlation with the abutment occlusal area (r = 0.475). Specimen breakage differed significantly among the four groups (P = 0.001). The lowest von Mises stress value was measured for prosthesis with a smallest abutment occlusal surface area (SA25) and the thickest zirconia crown. Thicker zirconia specimens (SA25) had higher fracture resistance and lowest stress values under 300 N loading.

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1623 ◽  
Author(s):  
Ting-Hsun Lan ◽  
Chin-Yun Pan ◽  
Pao-Hsin Liu ◽  
Mitch M. C. Chou

The aim of this study is to determine the minimum required thickness of a monolithic zirconia crown in the mandibular posterior area for patients with bruxism. Forty-nine full zirconia crowns, with seven different occlusal thicknesses of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mm, were made by using a computer-aided design/computer-aided manufacturing system (CAD/CAM). Seven crowns in each group were subjected to cyclic loading at 800 N and 5 Hz in a servohydraulic testing machine until fracture or completion of 100,000 cycles. Seven finite element models comprising seven different occlusal thicknesses of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mm were simulated using three different loads of vertical 800 N, oblique 10 degrees 800 N, and vertical 800 N + x N torque (x = 10, 50, and 100). The results of cyclic loading tests showed that the fracture resistance of the crown was positively associated with thickness. Specimen breakage differed significantly according to the different thicknesses of the prostheses (p < 0.01). Lowest von Mises stress values were determined for prostheses with a minimal thickness of 1.0 mm in different loading directions and with different forces. Zirconia specimens of 1.0 mm thickness had the lowest stress values and high fracture resistance and under 800 N of loading.


2014 ◽  
Vol 39 (4) ◽  
pp. E160-E170 ◽  
Author(s):  
AKF Costa ◽  
TA Xavier ◽  
PY Noritomi ◽  
G Saavedra ◽  
ALS Borges

SUMMARY The purpose of this study was to evaluate the influence the width of the occlusal isthmus and inlay material had on the stress distribution, displacement, and fracture resistance of upper human premolars. For this in vitro test, 35 intact upper premolars (UPM) were selected and five were kept intact for the control group (group I). The remaining 30 were divided into two experimental groups (n=15) according to the width of isthmus: conservative (CP) and extensive preparation (EP), one third and more than two thirds of cuspal distance, respectively. Five teeth from each experimental group were left without restoration for negative controls (CPnc and EPnc), and the remaining 10 in each group were subdivided according to the inlay material (resin or ceramic): group CPr, CP + indirect resin; group CPc, CP + ceramic; group EPr, EP + indirect resin; and group EPc, EP + ceramic. The cemented inlays were loaded in a universal testing machine at a crosshead speed of 0.5 mm/min until fracture. The fractured specimens were analyzed with stereomicroscopy, and the values of the fracture resistance evaluated by analysis of variance and Tukey test. For the finite element analyses, an average UPM for each group was modeled in Rhinoceros CAD software and imported to Ansys 13.0. An average of 320,000 tetrahedral elements and 540,000 nodes for the seven models were performed using the same experimental simulation setup for each. The models were constrained on the base, and a displacement of 0.02 mm was applied to keep a linear behavior for the analysis. A von Mises stress and total displacement fields were used for the coherence test and the maximum principal stress fields were used for mechanical behavior comparisons. Group I (161.73 ± 22.94) showed a significantly higher mean value than the other experimental groups (EPc: 103.55 ± 15.84; CPc: 94.38 ± 12.35; CPr: 90.31 ± 6.10; EPr: 65.42 ± 10.15; CPnc: 65.46 ± 5.37; EPnc: 58.08 ± 9.62). The stress distribution was different in all of the groups. EPnc showed a higher concentration of tensile stress on the cervical region of the proximal box. CPc and EPc provided a lower tensile stress and a smaller cuspal displacement. Within the limits of this study, the configuration of the inlay preparation is a significant factor in the fracture resistance of premolars: the smaller the amount of remaining tooth, the lower the fracture resistance. In addition, the teeth restored with ceramic materials showed a higher fracture resistance than those restored with composite resin.


2012 ◽  
Vol 28 (4) ◽  
pp. 394-399 ◽  
Author(s):  
Kadir Firidinoğlu ◽  
Suna Toksavul ◽  
Muhittin Toman ◽  
Mehmet Sarikanat ◽  
İbrahim Nergiz

The purpose of this study was to compare the fracture resistance and fracture mode of single implant-zirconium coping combinations using zirconium and titanium abutments and to analyze the stress distribution pattern using three-dimensional finite elements analysis. Twenty implants with titanium and zirconium abutments were randomly divided into two groups (n = 10) and into resin blocks. Zirconium copings were cemented onto the abutments. The specimens were loaded with 135° angles to the long axis and the load values at the moment of failure were recorded using a universal test machine. Stress levels were calculated according to the maximum Von Mises criteria. The fracture resistances for titanium and zirconium abutment groups were 525.65 N and 514.05 N, respectively. No significant differences were observed between two groups regarding the fracture resistance levels. The maximum Von Mises equivalent stress concentrated on zirconium copings in both of the groups. Implant-abutment-ZrO2 coping combination has the potential to withstand physiological occlusal forces in the anterior region. Three-dimensional finite elements analysis results of the implant-abutment-ZrO2 coping combination is compatible with the results of fracture resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


Author(s):  
Ershad Mortazavian ◽  
Zhiyong Wang ◽  
Hualiang Teng

The complicated steel wheel and rail interaction on curve causes side wear on rail head. Thus, the cost of maintenance for the track on curve is significantly higher than that for track on a tangent. The objective of this research is to develop 3D printing technology for repairing the side wear. In this paper, the study examines induced residual thermal stresses on a rail during the cooling down process after 3D printing procedure using the coupled finite volume and finite element method for thermal and mechanical analysis respectively. The interface of the railhead and additive materials should conserve high stresses to prevent any crack initiation. Otherwise, the additive layer would likely shear off the rail due to crack propagation at the rail/additive interface. In the numerical analysis, a cut of 75-lb ASCE (American Society of Civil Engineers) worn rail is used as a specimen, for which a three-dimensional model is developed. The applied residual stresses, as a result of temperature gradient and thermal expansion coefficient mismatch between additive and rail materials, are investigated. At the beginning, the worn rail is at room temperature while the additive part is at a high initial temperature. Then, additive materials start to flow thermal energy into the worn rail and the ambient. The thermal distribution results from thermal analysis are then employed as thermal loads in the mechanical analysis to determine the von-Mises stress distribution as the decisive component. Then, the effect of preheating on residual stress distribution is studied. In this way, the thermo-mechanical analysis is repeated with an increase in railhead’s initial temperature. In thermal analysis, the temperature contours at different time steps for both the non-preheated and preheated cases indicate that preheating presents remarkably lower temperature gradient between rail and additive part and also represents a more gradual cooling down process to allow enough time for thermal expansion mismatch alignment. In mechanical analysis, the transversal von-Mises stress distribution at rail/additive interface is developed for all cases for comparison purposes. It is shown that preheating is a key factor to significantly reduce residual stresses by about 40% at all points along transversal direction of interface.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1708 ◽  
Author(s):  
Maciej Zarow ◽  
Mirco Vadini ◽  
Agnieszka Chojnacka-Brozek ◽  
Katarzyna Szczeklik ◽  
Grzegorz Milewski ◽  
...  

By means of a finite element method (FEM), the present study evaluated the effect of fiber post (FP) placement on the stress distribution occurring in endodontically treated upper first premolars (UFPs) with mesial–occlusal–distal (MOD) nanohybrid composite restorations under subcritical static load. FEM models were created to simulate four different clinical situations involving endodontically treated UFPs with MOD cavities restored with one of the following: composite resin; composite and one FP in the palatal root; composite and one FP in the buccal root; or composite and two FPs. As control, the model of an intact UFP was included. A simulated load of 150 N was applied. Stress distribution was observed on each model surface, on the mid buccal–palatal plane, and on two horizontal planes (at cervical and root-furcation levels); the maximum Von Mises stress values were calculated. All analyses were replicated three times, using the mechanical parameters from three different nanohybrid resin composite restorative materials. In the presence of FPs, the maximum stress values recorded on dentin (in cervical and root-furcation areas) appeared slightly reduced, compared to the endodontically treated tooth restored with no post; in the same areas, the overall Von Mises maps revealed more favorable stress distributions. FPs in maxillary premolars with MOD cavities can lead to a positive redistribution of potentially dangerous stress concentrations away from the cervical and the root-furcation dentin.


Paleobiology ◽  
2019 ◽  
Vol 45 (1) ◽  
pp. 182-200 ◽  
Author(s):  
François Clarac ◽  
Florent Goussard ◽  
Vivian de Buffrénil ◽  
Vittorio Sansalone

AbstractThis paper aims at assessing the influence of the bone ornamentation and, specifically, the associated loss of bone mass on the mechanical response of the crocodylomorph osteoderms. To this end, we have performed three-dimensional (3D) modeling and a finite element analysis on a sample that includes both extant dry bones and well-preserved fossils tracing back to the Late Triassic. We simulated an external attack under various angles on the apical surface of each osteoderm and further repeated the simulation on an equivalent set of smoothed 3D-modeled osteoderms. The comparative results indicated that the presence of an apical sculpture has no significant influence on the von Mises stress distribution in the osteoderm volume, although it produces a slight increase in its numerical score. Moreover, performing parametric analyses, we showed that the Young's modulus of the osteoderm, which may vary depending on the bone porosity, the collagen fiber orientation, or the calcification density, has no impact on the von Mises stress distribution inside the osteoderm volume. As the crocodylomorph bone ornamentation is continuously remodeled by pit resorption and secondary bone deposition, we assume that the apical sculpture may be the outcome of a trade-off between the bone mechanical resistance and the involvement in physiological functions. These physiological functions are indeed based on the setup of a bone superficial vessel network and/or the recurrent release of mineral elements into the plasma: heat transfers during basking and respiratory acidosis buffering during prolonged apnea in neosuchians and teleosaurids; compensatory homeostasis in response to general calcium deficiencies. On a general morphological basis, the osteoderm geometric variability within our sample leads us to assess that the global osteoderm geometry (whether square or rectangular) does not influence the von Mises stress, whereas the presence of a dorsal keel would somewhat reduce the stress along the vertical axis.


2013 ◽  
Vol 07 (04) ◽  
pp. 484-491 ◽  
Author(s):  
Wagner Moreira ◽  
Caio Hermann ◽  
Jucélio Tomás Pereira ◽  
Jean Anacleto Balbinoti ◽  
Rodrigo Tiossi

ABSTRACT Objective: The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Materials and Methods: Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). Results: The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Conclusions: Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.


2016 ◽  
Vol 27 (2) ◽  
pp. 223-227 ◽  
Author(s):  
Hugo Henrique Diana ◽  
Juliana Santos Oliveira ◽  
Mariana Carolina de Lara Ferro ◽  
Yara T. Corrêa Silva-Sousa ◽  
Érica Alves Gomes

Abstract The aim of this study was to compare the stress distribution in radicular dentin of a maxillary canine restored with either a glass fiber post, carbon fiber post or an experimental dentin post using finite element analysis (3D-FEA). Three 3D virtual models of a maxillary canine restored with a metal-ceramic crown and glass fiber post (GFP), carbon fiber post (CFP), and experimental dentin post (DP) were obtained based on micro-CT images. A total of 180 N was applied on the lingual surface of the incisal third of each tooth at 45 degrees. The models were supported by the periodontal ligament fixed in three axes (x=y=z=0). The von Mises stress (VMS) of radicular dentin and the intracanal posts was calculated. The structures of all groups showed similar values (MPa) and distribution of maximum von Mises stress. Higher stress was found in the apical third of dentin while the posts presented homogeneous stress distribution along the axis. The fiber and dentin posts exhibited similar stress values and distribution. Thus, the experimental dentin post is a promising restorative material.


Author(s):  
Shafique M. A. Khan

The ASME Boiler and Pressure Vessel Code does not provide details of the pressure vessel saddle supports. The existing design guidelines are based on classical stress analysis with several assumptions to simplify the problem. With the advances in the computational technology and numerical methods, it is now possible to obtain more detailed information about stress distribution and hence provide optimal saddle design guidelines. This study will present an initial investigation into a 3D computational modeling and analysis of the saddle design. Results are presented for maximum von Mises stress occurring in various parts of the saddle with the increase in load.


Sign in / Sign up

Export Citation Format

Share Document