scholarly journals Flame Retardancy of Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Resin Composites

2019 ◽  
Vol 9 (16) ◽  
pp. 3275 ◽  
Author(s):  
Guo-qiang Chai ◽  
Guo-qing Zhu ◽  
Yunji Gao ◽  
Jinju Zhou ◽  
Shuai Gao

In order to study the effect of carbon nanotubes (CNTs) on the flame retardancy of carbon fiber (CF)/epoxy resin (EP) composites, CF/EP and CNTs/CF/EP composites were prepared by solution blending. The flame retardancy and thermal stability were studied by cone calorimetry and thermogravimetric analysis. It was found that CNTs and CF had a certain synergistic effect on improving flame retardancy and thermal stability of EP. The peak heat release rate of F7N7, which represents the EP composites with 0.7 wt % CF and 0.7 wt % CNTs, was minimal. The total smoke production of F5N5 which represents the EP composites with 0.5 wt % CF and 0.5 wt % CNTs was the smallest, which was decreased by 43.04% more than the EP. The initial decomposition temperature of F7N7 was about 14 °C higher than that of F7, and the mass loss at Tmax was greatly reduced. The apparent activation energy of F7N7 is 2.7 kJ·mol−1 more than EP. Finally, the tensile and flexural strength of the composites were also improved, so it could be applied to a high-performance matrix of CF/EP composites, which are usually used as the advanced composites in the aerospace field.

2017 ◽  
Vol 30 (9) ◽  
pp. 1094-1100 ◽  
Author(s):  
Zhao Juan ◽  
Qing Ning ◽  
Jiang Shaohua ◽  
Wu Suping

A novel carborane-containing epoxy resin was prepared via the curing reaction between epoxy resin (E51) and 1,2-bis(4-aminophthalimide)dimethyl-1,2-dicarba-closododecaborane (4-AP CBR). According to the nonisothermal differential scanning calorimetry method and the T-β extrapolation method, the curing temperatures of the 4-AP CBR/E51 system were theoretically determined. The cured carboranyl epoxy resin was analyzed by thermogravimetric analysis (TGA), which revealed that the resin had excellent thermal stability and thermal oxidative stability. The results of TGA indicated that the initial decomposition temperature of the resin was exceeding 400°C and the char yield at 800°C was around 60% both under nitrogen and in air atmosphere.


2021 ◽  
Author(s):  
Yajun Chen ◽  
Jingxiu He ◽  
Zhe Sun ◽  
Bo Xu ◽  
Juan Li ◽  
...  

Abstract Cellulose nanocrystals (CNCs) have been used as bio-based carbon source in intumescent system. However, CNCs have the disadvantages of low onset decomposition temperature and decompose and carbonize during processing. We, herein, demonstrated the design of phosphazene-containing CNCs (P/N-CNCs) with great thermal stability and outstanding charring ability. The TGA results showed that the initial decomposition temperature of P/N-CNCs was increased from 202.4 ℃ to 272.2 ℃ (increased by 34.5%), and the residual char at 700 ℃ was increased from 24.9 wt% to 55.8 wt% compared with CNCs. Then, flame retardant PLA composites were prepared by blending PLA, P/N-CNCs with ammonium polyphosphate (APP), melamine (MPP), aluminum hypophosphite (AHP) and piperazine pyrophosphate (PPAP), respectively. The thermal stability, flame retardant properties and mechanical properties of PLA composites were investigated. The results showed that the flame retardant system constructed by 7 wt% APP and 3 wt% P/N-CNCs had the best effect in PLA. PLA/7APP/3P/N-CNCs had the highest limit oxygen index value (28.1%), the lowest peak heat release rate (266 kW/m2) and reached UL 94 V-0 rating. Moreover, the tensile strength, impact strength and elongation at break of PLA/7APP/3P/N-CNCs were increased by 7.3%, 18.6% and 29.4%, respectively, compared with these properties of PLA/7APP/ 3CNCs. This work provides a new idea for the design of CNCs with great thermal stability and outstanding charring ability, and offers a new method for the preparation of high-performance flame-retardant PLA composites.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2145 ◽  
Author(s):  
Quanyi Liu ◽  
Donghui Wang ◽  
Zekun Li ◽  
Zhifa Li ◽  
Xiaoliang Peng ◽  
...  

With the increasing emphasis on environmental protection, the development of flame retardants for epoxy resin (EP) has tended to be non-toxic, efficient, multifunctional and systematic. Currently reported flame retardants have been capable of providing flame retardancy, heat resistance and thermal stability to EP. However, many aspects still need to be further improved. This paper reviews the development of EPs in halogen-free flame retardants, focusing on phosphorus flame retardants, carbon-based materials, silicon flame retardants, inorganic nanofillers, and metal-containing compounds. These flame retardants can be used on their own or in combination to achieve the desired results. The effects of these flame retardants on the thermal stability and flame retardancy of EPs were discussed. Despite the great progress on flame retardants for EP in recent years, further improvement of EP is needed to obtain numerous eco-friendly high-performance materials.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Yong Sun ◽  
Yongli Peng ◽  
Yajiao Zhang

In this work, a flame retardant curing agent (DOPO-MAC) composed of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide DOPO and methyl acrylamide (MAC) was synthesized successfully, and the structure of the compound was characterized by FT-IR and 1H-NMR. The non-isothermal kinetics of the epoxy resin/DOPO-MAC system with 1% phosphorus was studied by non-isothermal DSC method. The activation energy of the reaction (Ea), about 46 kJ/mol, was calculated by Kissinger and Ozawa method, indicating that the curing reaction was easy to carry out. The flame retardancy of the epoxy resin system was analyzed by vertical combustion test (UL94) and limiting oxygen index (LOI) test. The results showed that epoxy resin (EP) with 1% phosphorus successfully passed a UL-94 V-0 rating, and the LOI value increased along with the increasing of phosphorus content. It confirmed that DOPO-MAC possessed excellent flame retardance and higher curing reactivity. Moreover, the thermal stability of EP materials was also investigated by TGA. With the DOPO-MAC added, the residual mass of EP materials increased remarkably although the initial decomposition temperature decreased slightly.


Sign in / Sign up

Export Citation Format

Share Document