scholarly journals The Influence of the Damage of Mortise-Tenon Joint on the Cyclic Performance of the Traditional Chinese Timber Frame

2019 ◽  
Vol 9 (16) ◽  
pp. 3429
Author(s):  
Ben Sha ◽  
Hao Wang ◽  
Aiqun Li

In this article, the finite element method is used to build the analytical model of a traditional Chinese timber frame with straight mortise-tenon joints. The analytical model is then subjected to the lateral cyclic loading and verified based on the results of an experiment. Three types of damage in the straight mortise-tenon joint, including the gap between the mortise and tenon, damage in the top and the end of tenon, are proposed and idealized so that the analytical model can be modified accordingly. The hysteresis curve, stiffness and energy dissipation capacity derived from these damaged models with different damage extents are analyzed. The results indicate that the proposed damages of the joints have adverse influences on the lateral behavior of the timber frame. Both stiffness and energy dissipation capacity of the timber frame are weakened by these damages.

2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


2011 ◽  
Vol 110-116 ◽  
pp. 1483-1490
Author(s):  
Hoon Hyung Jung ◽  
Chae Sil Kim

This paper describes a finite element structural analysis model and determines analysis methods appropriate for determining the stability of the mast of a crane. This analysis model allows various analysis approaches to be applied to the conditions affecting the construction of a large gantry crane in order to ensure the stability of the mast of the crane. The finite element method is used as a way to construct an analytical model that can help ensure the stability of the mast in two stages. The model is used in a two-stage analytical process that takes into account the conditions of the model. In this way, the model can be used to judge the stability of the mast. By allowing variation in the analysis approach used for the crane mast, the analysis model may be changed if the conditions of the one-girder gantry crane require. Designers may apply this method for the active analysis of the stability of a crane mast.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Yingchao Ma ◽  
Jinqing Jia

The seismic behaviors of steel reinforced ultrahigh strength concrete (SRUHSC) frames with different axial compression ratios and shear span ratios are experimentally studied through the reversed cyclic loading test of four specimens. The test results reveal that the seismic response of the frame is closely related to the failure process and failure mode of the columns. Based on the results, a systematic exploration is further conducted in terms of the characteristics of the skeleton curve, hysteresis curve, strength degradation, stiffness degradation, and energy dissipation capacity of the structure. The results indicate that as the axial compression ratio increases, and the shear span ratio decreases, the failure process of the entire structure and the weakening of the beam end are accelerated. Meanwhile, a change of the failure mode is also observed, accompanied by corresponding changes in the strength, stiffness, and energy dissipation capacity of the system.


2007 ◽  
pp. S115-S121
Author(s):  
J Záhora ◽  
A Bezrouk ◽  
J Hanuš

The aim of this study was to analyze the possibilities of various types of stent modeling and to develop some new models. A brief survey of basic properties of stents and a list of basic designs of stents is presented. Two approaches to stent modeling were identified. Structural mechanics is the theoretical background of our analytical model of a spiral stent. The finite element method was also used. The measurement equipment for model evaluation was developed.


Wood Research ◽  
2021 ◽  
Vol 66 (2) ◽  
pp. 321-330
Author(s):  
Tianxing Zhang ◽  
Wengang Hu

The effect of tenon length and tenon width on withdrawal load capacity of mortise and tenon (M-T) joint was studied based on the finite element method (FEM), and the relationship of withdrawal load capacity relating to tenon length and tenon width was regressed using response surface method. The results showed that the tenon length and tenon width had remarkable effects on withdrawal load capacity of M-T joint T-shaped sample. The effect of tenon length on withdrawal load capacity was greater than tenon width. The regression equation used to predict the withdrawal load capacity was capable of optimizing the tenon sizes of M-T joint with R-square of 0.926. Using FEM can get more knowledge of M-T joint visually, and reduce the costs of materials and time of experiments.


2010 ◽  
Vol 163-167 ◽  
pp. 681-685 ◽  
Author(s):  
Zhan Zhong Yin ◽  
Xiu Li Wang

Double-tube buckling restrained braces with contact ring is a new buckling-restrained brace (BRBs), and is a refinement of double-tube buckling restrained braces. Based on the theory of the finite element method, the finite element entity model of double-tube buckling restrained brace with contact-ring has been made. The double-tube buckling restrained braces is systematically analyzed and computed. The analysis results indicate that this kind of buckling restrained brace has good energy dissipation and restoring force characteristics, and can overcome the difficulty in connection.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4039-4051
Author(s):  
Deshan Yang ◽  
Ming Xu ◽  
Zhongfan Chen

In order to study the lateral resistance of reinforced traditional Chinese timber frames with mortise-tenon connections, three cyclic tests were conducted on one-bay mortise-tenon jointed traditional timber frames. Three reinforcement methods, i.e., steel angle strengthening, wood brace, and Timu, were studied. Seismic performances were evaluated according to the experimental phenomena and the test results. The failure mode, hysteresis curves, skeleton curves, curves of stiffness degradation, and energy dissipation capacity of the three specimens were analyzed based on the tests. The test results showed that the wood frames had good deformability. The stiffness degradation of the timber frame was severe at the initial loading stage; however, the degradation rate tended to decrease after the initial stage. In addition, the energy dissipation increased as the lateral displacement increased. The wooden frames with mortise tenon joints strengthened by steel angle, wood brace, and Timu can achieve good aseismic results. The study can provide a theoretical basis for seismic design and reinforcing methods of traditional timber structures.


2013 ◽  
Vol 671-674 ◽  
pp. 133-136
Author(s):  
Shao Chong Yang ◽  
Jian Hui Zhang

A non-linear numerical method of composite foundation with rigid-flexible piles in the stratified soil under the vertical load was established in this paper. The analytical model of the pile-soil-pile interaction was used to imitate the pile-soil system and the finite element method was applied to simulate the cushion (the cushion cap). The corresponding calculation program was programmed. Computation results show that the method is reasonable and feasible, and can be applied to the analysis of practical composite foundation.


2018 ◽  
Vol 763 ◽  
pp. 541-548 ◽  
Author(s):  
Eugene Boadi-Danquah ◽  
Duncan MacLachlan ◽  
Matthew Fadden

One approach to making modern structures more economically and environmentally sustainable is designing and constructing them to be adaptable to rapidly changing markets and building occupancies. At the same time, these structures are required to be resilient to seismic events. As a step towards meeting these goals, a lightweight, two-way, rapidly constructible and reconfigurable modular steel floor (RCRMSF) system has been developed. The system is fabricated from light-gauge steel plates sandwiching a grillage of orthogonally arranged cold formed Z-purlins, can span 9.1 m x 12.2 m, requires only girder supports, and fits within current steel construction framework. This study investigates the seismic behavior of the RCRMSF diaphragm through the use of high fidelity nonlinear finite element (FE) models. Six full-scale cantilever diaphragm models have been developed to study the effect of varying RCRMSF configurations and end support details. Both monotonic and cyclic loading protocols are used to determine the stiffness, strength, energy dissipation capacity, and general hysteretic behavior of the diaphragms. Based on the FE models, the behavior of the RCRMSF diaphragm is influenced primarily by the plate thickness and perimeter connection detail to the supporting steel frame. Overall, the RCRMSF has adequate diaphragm stiffness and strength, and shows favorable energy dissipation capacity due to its post-peak inelastic behavior. This observation implies that the RCRMSF can serve as an alternative solution to current seismic design and construction practices.


2010 ◽  
Vol 163-167 ◽  
pp. 1300-1306
Author(s):  
Pu Yang ◽  
Jing Tang

Using flexibility-based finite element method based on fiber model, several experiments of reinforced concrete specially shaped columns under cyclic loading which cross section is ‘L’, ‘T’ and ‘+’ shape with different longitudinal reinforcement and hoop reinforcement have been simulated, and the seismic behavior of columns such as strength, ductility and energy dissipation are analyzed. Results from the analytical study indicate that: 1) ductility of the column increases as quantity of hoop reinforcement increases. 2) strength capacity of the column increase linearly as ratio of longitudinal reinforcement increase, but is not seriously affected by hoop reinforcement; 3) energy dissipation capacity of the column is not significantly affected by hoop and longitudinal reinforcement, particularly in slightly nonlinear range.


Sign in / Sign up

Export Citation Format

Share Document