scholarly journals Farmers’ Perceptions of Climate Change and Agricultural Adaptation in Burkina Faso

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 827 ◽  
Author(s):  
Jorge Alvar-Beltrán ◽  
Abdalla Dao ◽  
Anna Dalla Marta ◽  
Ana Heureux ◽  
Jacob Sanou ◽  
...  

The Sahel region is considered a hotspot for climate change hazards and vulnerability of weather reliant sectors, including agriculture. Farmers in Burkina Faso have a long history of adapting their farming activities to frequent changes in climate. Using 150 in-person surveys, this study assesses farmers’ perceptions of climate change based on multiple climate variables, and reviews adaptation practices, including soil and water conservation strategies, in the Soudanian, Soudano-Sahelian, and Sahelian agroclimatic zones of Burkina Faso. In general, farmers are aware of changing climatic conditions, including increased temperatures, greater rainfall variability, heavier precipitation events, delayed onset, and premature offset of the rainy season. However, farmers perceive shifts in climate differently depending on their location and agroclimatic zone. As a result, different adaption strategies are implemented by farmers according to the climatic, societal, and economic context. Survey results show that in the Sahel, climate adaptation strategies rely on traditional knowledge and experimental approaches; whereas in the Soudanian zone, where weather conditions are more favorable for agriculture, adaptation practices are market oriented. These regional differences are important for targeting advisory services, planning processes, and decision-making to support the effective provision of weather and climate information services to the last mile.

2020 ◽  
Vol 28 (4) ◽  
pp. 543-553
Author(s):  
Z.N. Gahi ◽  
M.K.A. Kablan ◽  
O.J.G. Kpan ◽  
K. Dongo ◽  
M. Badolo

Burkina Faso, like other Sahelian countries, has experienced a profound change in its climatic regime,with the new context characterised by high rainfall variability with an overall downward trend and ashortening of the seasons. The future rainfall pattern anticipates a decrease in the frequency of lowrainfall (0.1 to 5 mm per day), a lengthening of the average duration of dry sequences, and an early endand late start of rainy seasons. The objective of this study was to perform an in-depth analysis of stakeholder perceptions about agricultural water (AgWater) resources sustainability, practices in the context of climate variability and change in Burkina Faso. Interviews were held with institutional actors involved in water resources decision making and initiatives (Government, Research, Non-Governmental Organisations) in the country. In addition, based on four main criteria (climate condition, type of farm and crop, type of AgWater sources, reliability of AgWater), three agricultural sites were investigated using household surveys. The results showed that organisations and farmers in Burkina Faso were aware of climate impacts and had initiated and implemented for many years, diverse options and water control mechanisms for AgWater adaptation. However, there were still gaps in strategies for adapting the water sector to climate threats. Institutional bodies had not got yet attained capacity to sustainably anticipate the effects of climate change on AgWater. There was a lack of mainstreaming hydroclimate services at farm levels, especially for the dry season crops; lack of on-farm flood control mechanisms, absence of a clear gender approach and no standardised monitoring system, Farmers also lacked anticipatory resilience strategies, particularly those who used water sources that were considered as “reliable” then. In general, most of the climate adaptation initiatives implemented lacked synergies, sustainability, and were uncertain about sound water resource management such as moving towards “no regret” and “win-win” options.    


SAGE Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215824402110326
Author(s):  
Robert Becker Pickson ◽  
Ge He

This study assessed smallholder farmers’ perceptions, adaptation constraints, and determinants of adaptive capacity to climate change. The study used severity and problem confrontation index estimations to examine the farmers’ perceptions of climate warming and barriers to climate adaptation. The results indicated that the farmers were cognizant of climate change and its adverse impacts on their livelihood. It was evident that most surveyed rice farmers perceived changes in climatic conditions to affect rice production adversely. The farmers claimed that unpredictable weather conditions, limited farm size, inadequate farm labor, scarce water resources, high cost of farm inputs, and insufficient information on weather conditions had impeded their adoption of climate change adaptive strategies. Based on the results of the principal component analysis, economic resources, physical resources, information, human resources, and technology significantly influence smallholder farmers’ responsive ability to climate warming. Therefore, policymakers must design policy frameworks and measures that consider these significant factors explaining farmers’ constraints to climate change adaptation.


2020 ◽  
pp. 1264-1274
Author(s):  
P.H. Zaidi ◽  
Thanh Nguyen ◽  
Dang N. Ha ◽  
Suriphat Thaitad ◽  
Salahuddin Ahmed ◽  
...  

Most parts of the Asian tropics are hotspots of climate change effects and associated weather variabilities. One of the major challenges with climate change is the uncertainty and inter-annual variability in weather conditions as crops are frequently exposed to different weather extremes within the same season. Therefore, agricultural research must strive to develop new crop varieties with inbuilt resilience towards variable weather conditions rather than merely tolerance to individual stresses in a specific situation and/or at a specific crop stage. C4 crops are known for their wider adaptation to range of climatic conditions. However, recent climatic trends and associated variabilities seem to be challenging the threshold limit of wider adaptability of even C4 crops like maize. In collaboration with national programs and private sector partners in the region, CIMMYT-Asia maize program initiated research for development (R4D) projects largely focusing on saving achievable yields across range of variable environments by incorporating reasonable levels of tolerance/resistance to major abiotic and biotic stresses without compromising on grain yields under optimal growing conditions. By integrating novel breeding tools like - genomics, double haploid (DH) technology, precision phenotyping and reducing genotype × environment interaction effects, a new generation of maize germplasm with multiple stress tolerance that can grow well across variable weather conditions were developed. The new maize germplasm were targeted for stress-prone environments where maize is invariability exposed to a range of sub-optimal growing conditions, such as drought, heat, waterlogging and various virulent diseases. The overarching goal of the stress-resilient maize program has been to achieve yield potential with a downside risk reduction.


Author(s):  
Yuri Chendev ◽  
Maria Lebedeva ◽  
Olga Krymskaya ◽  
Maria Petina

The ongoing climate change requires a quantitative assessment of the impact of weather conditions on the nature and livelihoods of the population. However, to date, the concept of “climate risk” has not been finally defined, and the corresponding terminology is not universally recognized. One manifestation of climate change is an increase in climate variability and extremeness in many regions. At the same time, modern statistics indicate growing worldwide damage from dangerous weather and climate events. The most widely used in climate services is the concept of “Vulnerability index”, which reflects a combination (with or without weighing) of several indicators that indicate the potential damage that climate change can cause to a particular sector of the economy. development of adaptation measures to ensure sustainable development of territories. The main criterion for the vulnerability of the territory from the point of view of meteorological parameters is the extremeness of the basic values: daily air temperature, daily precipitation, maximum wind speed. To fully take into account the possible impacts of extreme climatic conditions on the region’s economy, it is necessary to detail the weather and climate risks taking into account the entire observation network, since significant differences in quantitative assessment are possible. The obtained average regional values of the climate vulnerability indices for the Belgorod Region of the Russian Federation provide 150 points for the winter period, 330 points for the summer season, which indicates the prevalence of extreme weather conditions in the warm season. Most of the territory has a relative influence on climatic phenomena, with the exception of the East and the Southeast Region. Moreover, the eastern part of the region is the most vulnerable in climatic terms.


2020 ◽  
Vol 3 (1) ◽  
pp. 1-17
Author(s):  
Mbewe Jacqueline ◽  
Kabwe Harnadih Mubanga

Purpose: Climate change affects local and global rainfall patterns and hence has a counter effect on smallholder agriculture. Impacts of climate change on agriculture are largely due to rainfall variability resulting in reduced yields due to crop-water stress and emergency of pathogens and diseases. In Zambia, climate change has been manifested through increased intensity of droughts and floods. These rainfall anomalies adversely affect agriculture and food systems. In order to survive the impacts of climate change and variability, smallholder farmers in Chongwe have adopted their livelihoods and farming systems to the new climatic patterns.Methodology: This study assessed how smallholder farmers in Chongwe District have adopted their livelihoods as a response to changed climatic conditions. It also investigated the perceptions of smallholder farmers as regards changes in aspects of their climatic conditions. Data collection involved a critical review of literature related to climate change and agriculture, observations, semi- structured interviews with 60 smallholder farmers and eight key informants. The data were analysed using multiple analysis techniques which included the descriptive statistics, One-way analysis of Variance (ANOVA), and the post-hoc Least Square Difference for pairwise comparisons of incomes from different livelihoods engaged in by smallholder farmers .The gendered comparisons of livelihood engagement was done using the chi-square test of association.Findings: The results showed that all farmers perceived occurrence of changes in climatic conditions in the light of changed rainfall patterns in that there has been uncertainty in onset of rains, short rainy season, more intermittent rainfall and increased frequency of intra-seasonal droughts. These changes have led to farmers to adopt such farming techniques as potholing in preference to oxen and tractor ploughing when farming is done on smaller pieces of land. There was a significant difference in the mean annual incomes generated from on-farm livelihoods (ZMW 3677.59; n=58) and off-farm livelihoods (ZMW 6840.91; n = 58) (p= 0.001). Farmers generated the highest income returns by engaging in casual work (ZMW 10307.69; n = 13) compared to every other livelihoods common in the area such as gardening (p=0.002), petty trade (p=0.002) and on-farm livelihoods (p=0.001).Contribution to policy, theory and practice: It was therefore concluded that diversification of income through diversified livelihoods would help smallholder farmers enhance their resilience in the face of changed climatic conditions. On-farm livelihoods should not always be the main income source for farmers as results indicated that farmers engaged in casual work generated higher incomes than those who depended on farming. It was recommended that policy direction should be towards introduction of a gender responsive credit facility that can help improve women’s engagement in off-farm income generating livelihoods, as well as encourage climate change resilience.


2018 ◽  
Author(s):  
Sara Tomiolo ◽  
Mark C. Bilton ◽  
Katja Tielbörger

Summary(1) Climate change will decrease precipitation and increase rainfall variability in Eastern Mediterranean regions, with responses of plant communities largely uncertain. Here, we tested short-term responses of dryland plant communities to contrasting rainfall regimes using a novel experimental approach.(2) We exposed three annual plant communities to sharp changes in climatic conditions using whole community reciprocal transplants of soil and seed banks. We tested for the role of climate vs. community origin on community response and resistance. In parallel, we asked whether origin-specific climatic adaptations predict compositional shifts across climates.(3) For both community origins, the most dry-adapted species in each community increased in dry climate and the wet-adapted species increased in wet climate. Dry community origins showed large compositional shifts while maintaining stable plant density, biomass and species richness across climates. Conversely, wet communities showed smaller compositional shifts, but larger variation in biomass and richness.(4) Asynchrony in species abundances in response to rainfall variability could maintain structural community stability. This, in combination with seed dormancy, has the ability to delay extinction in response to climate change. However, increasing occurrence of extreme droughts may, in the long-term, lead to loss of wet-adapted species.


Author(s):  
Jeannette del Carmen Zambrano Nájera ◽  
Oscar Ortega

In Colombia, tobacco cultivation is an important generator of employment and income for farmers; however it faces different problems as low crop yield compared to other countries; specifically, in the north of the country, where the climatic conditions are less favorable and the productivity is lower than other areas of the country due to low mechanization. In order to improve the tobacco yield per hectare in the municipality of Ovejas, this research aimed to determine the water requirements of burley tobacco cultivation under conditions of climate variability to obtain optimal information for crop calendars. Water requirements of burley tobacco were determined using the crop water requirement equation. This calculation ethod was programmed in Python to automate the generation of maps, developing a tool that allowed a detailed analysis per unit area per week. Based on the results obtained, weeks 17 and 18 of the year (last week of April and first week of May, respectively) are proposed as optimal planting times, since the cycles of crops planted in this period showed precipitation surplus in the initial phase of cultivation, which is a critical phase for their development. Climate change simulation showed that crops must be continuously monitored in order to adapt to new weather conditions.


Author(s):  
S. P. Holoborodko ◽  
O. M. Dymov

The article presents the results of scientific research to specify the seed productivity of alfalfa grown on irrigated and rainfed lands of the southern Steppe of Ukraine. It is proved that obtaining stably high yields of conditioned alfalfa seeds under the conditions of regional climate change is possible only providing an optimal supply of productive moisture in the soil, since in recent years the crop has been grown under high temperature conditions and insufficient precipitation. It was established that irrigation of seed alfalfa throughout the growing season regardless of cultivar and mowing, should be conducted in two interphase periods: "the beginning of regrowth (shoots) – early budding" and "the beginning of budding – beginning of flowering". In the first interphase period, it is necessary to create conditions for optimal growth and development of plants that is achieved by maintaining the level of pre-irrigation humidity in 0-100 cm layer in the range of 70-75% MMHC on dark chestnut soils and 55-60% – on sandy loam chernozems. In the second interphase period, it is necessary to provide optimal conditions for the development of production processes and the formation of conditioned seed yields that is achieved by inhibiting growth processes, since alfalfa tends to grow up. Therefore, the level of pre-irrigation humidity of the calculated layer on medium and heavy loamy soils should be maintained within 60-65% MMHC and 45-50% MMHC – on sandy loam chernozems. The analysis of changes in natural and climatic conditions carried out over the past years shows that in the subzone of the southern Steppe, alfalfa cultivation for seeds is possible only by providing the developed irrigated agriculture. Getting the deficit of natural moisture solved, combined with high availability of heat resources and fertile dark‑chestnut soils and southern chernozems, is an objective natural prerequisite for further growth of seed productivity of alfalfa and reducing its dependence on extreme weather conditions and, above all, in medium‑dry (75%) and dry (95%) precipitation years.


2020 ◽  
Vol 50 (7) ◽  
pp. 659-669
Author(s):  
Wendpouiré Arnaud Zida ◽  
Farid Traoré ◽  
Babou André Bationo ◽  
Jean-Philippe Waaub

This study was carried out in the northern region of Burkina Faso under Sahelian climatic conditions. The area was particularly affected by the 1970s–1980s droughts that led to the degradation of land and vegetation. Since the early 1990s, a gradual return of rainfall has been observed throughout the Sahel region. In this new environmental context, understanding the development of woody plants is important for effective conservation and management. We analyzed the dynamics of woody plant cover over the 30 years following the end of the 1970s–1980s droughts by using Landsat images from 1986, 1999, and 2015 with 30 m spatial resolution and taking into account changes in rainfall and land use. The change in the enhanced vegetation index 1 (EVI1) at the beginning of the dry season was used as a proxy for the change in photosynthetic activity of woody plants. Results showed an improvement in EVI1 on 98% of the study area, with a mean increase of 0.20 from 1986 to 2015. This improvement was accompanied by an increase in agroforestry and was weakly correlated with rainfall. The improvement in EVI1 was unstable, however, with a decline from 1999 to 2015 in the areas undergoing regreening.


2021 ◽  
Author(s):  
Nikolaos Christidis ◽  
Peter Stott

<p>As the climate becomes warmer under the influence of anthropogenic forcings, increases in the concentration of the atmospheric water vapour may lead to an intensification of wet and dry extremes. Understanding regional hydroclimatic changes can provide actionable information to help communities adapt to impacts specific to their location. This study employs an ensemble of 9 CMIP6 models and compares experiments with and without the effect of human influence using detection and attribution methodologies. The analysis employs two popular drought indices: the rainfall-based standardised precipitation index (SPI), and its extension, the standardized precipitation evapotranspiration index (SPEI), which also accounts for changes in potential evapotranspiration. Both indices are defined relative to the pre-industrial climate, which enables a comparison between past, present and future climatic conditions. Potential evapotranspiration is computed with the simple, temperature-based, Thornthwaite formula. The latter has been criticised for omitting the influences of radiation, humidity and wind, but has been shown to yield very similar trends, spatial averages and correlations with more sophisticated models. It is therefore deemed to be adequate in studies assessing the broader overall effect of climate change, which are more concerned with wet and dry trends and changes in characteristics of extremes rather than the precise estimation of drought index values. The rainfall-based index suggests a shift towards wetter conditions in the north and dryer in the south of the continent, as well as an overall increase in variability. Nevertheless, when the temperature effect is included, the wet trends in the north are largely masked leading to increasingly drier summers across most of the continent. A formal statistical methodology indicates that the fingerprint of forced climate change has emerged above variability and is thus detectable in the observational trends of both indices. A broadening of the SPI distribution also suggests higher rainfall variability in a warmer climate. The study demonstrates a striking drying trend in the Mediterranean region, suggesting that what were extremely dry conditions there in the pre-industrial climate may become normal by the end of the century.</p>


Sign in / Sign up

Export Citation Format

Share Document