scholarly journals Investigation of Volcanic Emissions in the Mediterranean: “The Etna–Antikythera Connection”

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Anna Kampouri ◽  
Vassilis Amiridis ◽  
Stavros Solomos ◽  
Anna Gialitaki ◽  
Eleni Marinou ◽  
...  

Between 30 May and 6 June 2019 a series of new flanks eruptions interested the south-east flanks of Mt. Etna, Italy, forming lava flows and explosive activity that was most intense during the first day of the eruption; as a result, volcanic particles were dispersed towards Greece. Lidar measurements performed at the PANhellenic GEophysical observatory of Antikythera (PANGEA) of the National Observatory of Athens (NOA), in Greece, reveal the presence of particles of volcanic origin above the area the days following the eruption. FLEXible PARTicle dispersion model (FLEXPART) simulations and satellite-based SO2 observations from the TROPOspheric Monitoring Instrument onboard the Sentinel-5 Precursor (TROPOMI/S5P), confirm the volcanic plume transport from Etna towards PANGEA and possible mixing with co-existing desert dust particles. Lidar and modeled values are in agreement and the derived sulfate mass concentration is approximately 15 μg/m3. This is the first time that Etna volcanic products are monitored at Antikythera station, in Greece with implications for the investigation of their role in the Mediterranean weather and climate.

2021 ◽  
Author(s):  
Anna Kampouri ◽  
Vassilis Amiridis ◽  
Stavros Solomos ◽  
Anna Gialitaki ◽  
Eleni Marinou ◽  
...  

<p>In the last years, several Etna eruption events are documented, forming lava flows and explosive activity. The Pilot EO4D_ash – Earth observation data for detection, discrimination & distribution (4D) of volcanic ash of the e-shape project provides the PANhellenic GEophysical observatory of Antikythera (PANGEA) of the National Observatory of Athens (NOA), in Greece with near-real-time alerts from Etna volcano eruptions. These alerts are used in the PANGEA station to monitor and reveal the presence of volcanic particles above the area the days following an eruption, also the station is supported by a volcanic particle monitoring and forecasting warning system. In this work, we investigate the volcano eruption between 30 May and 6 June 2019 which affected the southern parts of Greece and reaching the Antikythera station. Due to the prevailing meteorological conditions, volcanic particles and gases followed an easterly direction and were dispersed towards Greece. FLEXPART dispersion model simulations confirm the volcanic plume transport from Etna towards PANGEA, mixing also with co-existing desert dust particles. Model simulations are evaluated with Polly<sup>XT</sup> lidar measurements performed at PANGEA and satellite-based SO<sub>2</sub> observations from the TROPOspheric Monitoring Instrument onboard the Sentinel-5 Precursor (TROPOMI/S5P). This is the first time that Etna volcanic products are monitored at the Antikythera station, in Greece with implications for the investigation of their role in the Mediterranean weather and climate.</p><p><strong>Acknowledgments</strong>: We acknowledge the support by EU H2020 E-shape project (Grant Agreement n. 820852). Also, this research was supported by data and services obtained from the PANhellenic Geophysical Observatory of Antikythera (PANGEA) of the National Observatory of Athens (NOA), Greece, and by the project “PANhellenic infrastructure for Atmospheric Composition and climatE change” (MIS 5021516) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). NOA team acknowledges the support of the Stavros Niarchos Foundation (SNF).</p>


2020 ◽  
Author(s):  
Mariëlle Mulder ◽  
Delia Arnold ◽  
Christian Maurer ◽  
Marcus Hirtl

<p>An operational framework is developed to provide timely and frequent source term updates for volcanic emissions (ash and SO<sub>2</sub>). The procedure includes running the Lagrangian particle dispersion model FLEXPART with an initial (a priori) source term, and combining the output with observations (from satellite, ground-based, etc. sources) to obtain an a posteriori source term. This work was part of the EUNADICS-AV (eunadics-av.eu), which is a continuation of the work developed in the VAST project (vast.nilu.no). The aim is to ensuring that at certain time intervals when new observational and meteorological data is available during an event, an updated source term is provided to analysis and forecasting groups. The system is tested with the Grimsvötn eruption of 2011. Based on a source term sensitivity test, one can find the optimum between a sufficiently detailed source term and computational resources. Because satellite and radar data from different sources is available at different times, the source term is generated with the data that is available the earliest after the eruption started and data that is available later is used for evaluation.</p>


2013 ◽  
Vol 13 (9) ◽  
pp. 4749-4781 ◽  
Author(s):  
C. Hörmann ◽  
H. Sihler ◽  
N. Bobrowski ◽  
S. Beirle ◽  
M. Penning de Vries ◽  
...  

Abstract. During recent years, volcanic emissions turned out to be a natural source of bromine compounds in the atmosphere. While the initial formation process of bromine monoxide (BrO) has been successfully studied in local ground-based measurements at quiescent degassing volcanoes worldwide, literature on the chemical evolution of BrO on large spatial and temporal scales is sparse. The first space-based observation of a volcanic BrO plume following the Kasatochi eruption in 2008 demonstrated the capability of satellite instruments to monitor such events on a global scale. In this study, we systematically examined GOME-2 observations from January 2007 until June 2011 for significantly enhanced BrO slant column densities (SCDs) in the vicinity of volcanic plumes. In total, 772 plumes from at least 37 volcanoes have been found by using sulphur dioxide (SO2) as a tracer for a volcanic plume. All captured SO2 plumes were subsequently analysed for a simultaneous enhancement of BrO and the data were checked for a possible spatial correlation between the two species. Additionally, the mean BrO/SO2 ratios for all volcanic plumes have been calculated by the application of a bivariate linear fit. A total number of 64 volcanic plumes from at least 11 different volcanoes showed clear evidence for BrO of volcanic origin, revealing large differences in the BrO/SO2 ratios (ranging from some 10−5 to several 10−4) and the spatial distribution of both species. A close correlation between SO2 and BrO occurred only for some of the observed eruptions or just in certain parts of the examined plumes. For other cases, only a rough spatial relationship was found. We discuss possible explanations for the occurrence of the different spatial SO2 and BrO distributions in aged volcanic plumes.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 408 ◽  
Author(s):  
Mojtaba Heydarizad ◽  
Ezzat Raeisi ◽  
Rogert Sori ◽  
Luis Gimeno

Iran has faced many water shortage crises in the past. Iran’s moisture sources for precipitation were identified by Lagrangian approach using the FLEXible PARTicle dispersion model (FLEXPART) v9.0 model. The results demonstrate that Iran receives its moisture from both continental and oceanic sources. During the wet season, moisture uptake from the Arabian Sea, the Persian Gulf, and the Mediterranean Sea is dominant, while during the dry season, the role of the Red Sea, the Caspian Sea, and the Persian Gulf is intensified. Studying drought conditions by comparing 1-month, 6-month, and 12-month standardized precipitation index (SPI) with (E-P) values of oceanic and continental moisture sources (E stands for the evaporation and P the precipitation) using multiregression model demonstrates that among oceanic sources the Arabian Sea, the Persian Gulf, the Mediterranean Sea, and the Indian Ocean affect SPI values and among continental sources, moisture from bare grounds and cultivated lands influences SPI values during wet season. However, no correlation exists between oceanic and continental (E-P) and SPI values during the dry season. The results obtained by this study can be used by meteorologists and hydrology scientists for future water management programmes in Iran.


2017 ◽  
Author(s):  
Vanessa Brocchi ◽  
Gisèle Krysztofiak ◽  
Valéry Catoire ◽  
Jonathan Guth ◽  
Virginie Marécal ◽  
...  

Abstract. The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign was set up in August 2014, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) project. This campaign aimed at studying the chemical variability of gaseous pollutants and aerosols in the troposphere along a West-East transect above the Mediterranean Basin (MB). In the present work, we focus on two biomass burning events detected at 5.4 and 9.7 km altitude above sea level (asl) above Sardinia (from 39°12 N–9°15 E to 35°35 N–12°35 E and at 39°30 N–8°25 E, respectively). Concentration variations in trace gas carbon monoxide (CO) and aerosols were measured thanks to the standard instruments on-board the Falcon-20 aircraft operated by the Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) and the Spectromètre InfraRouge In situ Toute Altitude (SPIRIT) developed by LPC2E. 20-day backward trajectories with Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle) help understanding the transport processes and the origin of the emissions that contributed to these pollutions detected above Sardinia. Biomass burning emissions came (i) on 10 August from the Northern American continent with air masses transported during 5 days before arriving over the MB, and (ii) on 6 August from Siberia with air masses travelling during 12 days and enriched in fire emission products above Canada 5 days before arriving over the MB. In combination with the Global Fire Assimilation System (GFAS) inventory and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite fire locations, FLEXPART reproduces well the contribution of those fires to CO and aerosols enhancements under adjustments of the injection height to 10 km in both cases, and application of an amplification factor of 2.5 on CO GFAS emissions for the 10 August event. The chemistry transport model (CTM) MOCAGE is used as a complementary tool for the case of 6 August to confirm the origin of the emissions by tracing the CO global atmospheric composition reaching the MB. For this event, both models agree on the origin of air masses with CO concentrations simulated with MOCAGE lower than the observed ones, likely caused by the coarse model horizontal resolution that yields the dilution of the emissions and diffusion during transport. In combination with wind fields, the analysis of the transport of the air mass documented on 6 August suggests the subsidence of CO pollution from Siberia towards North America and then a transport to the MB via fast jet winds located at around 5.5 km in altitude.


2021 ◽  
Vol 14 (11) ◽  
pp. 7153-7165
Author(s):  
Oscar S. Sandvik ◽  
Johan Friberg ◽  
Moa K. Sporre ◽  
Bengt G. Martinsson

Abstract. In this study we describe a methodology to create high-vertical-resolution SO2 profiles from volcanic emissions. We demonstrate the method's performance for the volcanic clouds following the eruption of Sarychev in June 2009. The resulting profiles are based on a combination of satellite SO2 and aerosol retrievals together with trajectory modelling. We use satellite-based measurements, namely lidar backscattering profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instrument, to create vertical profiles for SO2 swaths from the Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite. Vertical profiles are created by transporting the air containing volcanic aerosol seen in CALIOP observations using the FLEXible PARTicle dispersion model (FLEXPART) while preserving the high vertical resolution using the potential temperatures from the MERRA-2 (Modern-Era Retrospective analysis for Research and Application) meteorological data for the original CALIOP swaths. For the Sarychev eruption, air tracers from 75 CALIOP swaths within 9 d after the eruption are transported forwards and backwards and then combined at a point in time when AIRS swaths cover the complete volcanic SO2 cloud. Our method creates vertical distributions for column density observations of SO2 for individual AIRS swaths, using height information from multiple CALIOP swaths. The resulting dataset gives insight into the height distribution in the different sub-clouds of SO2 within the stratosphere. We have compiled a gridded high-vertical-resolution SO2 inventory that can be used in Earth system models, with a vertical resolution of 1 K in potential temperature, 61 ± 56 m, or 1.8 ± 2.9 mbar.


2020 ◽  
Vol 12 (23) ◽  
pp. 3866
Author(s):  
Simona Scollo ◽  
Antonella Boselli ◽  
Stefano Corradini ◽  
Giuseppe Leto ◽  
Lorenzo Guerrieri ◽  
...  

Volcanic emissions are a well-known hazard that can have serious impacts on local populations and aviation operations. Whereas several remote sensing observations detect high-intensity explosive eruptions, few studies focus on low intensity and long-lasting volcanic emissions. In this work, we have managed to fully characterize those events by analyzing the volcanic plume produced on the last day of the 2018 Christmas eruption at Mt. Etna, in Italy. We combined data from a visible calibrated camera, a multi-wavelength elastic/Raman Lidar system, from SEVIRI (EUMETSAT-MSG) and MODIS (NASA-Terra/Aqua) satellites and, for the first time, data from an automatic sun-photometer of the aerosol robotic network (AERONET). Results show that the volcanic plume height, ranging between 4.5 and 6 km at the source, decreased by about 0.5 km after 25 km. Moreover, the volcanic plume was detectable by the satellites up to a distance of about 400 km and contained very fine particles with a mean effective radius of about 7 µm. In some time intervals, volcanic ash mass concentration values were around the aviation safety thresholds of 2 × 10−3 g m−3. Of note, Lidar observations show two main stratifications of about 0.25 km, which were not observed at the volcanic source. The presence of the double stratification could have important implications on satellite retrievals, which usually consider only one plume layer. This work gives new details on the main features of volcanic plumes produced during low intensity and long-lasting volcanic plume emissions.


2012 ◽  
Vol 12 (11) ◽  
pp. 29325-29389 ◽  
Author(s):  
C. Hörmann ◽  
H. Sihler ◽  
N. Bobrowski ◽  
S. Beirle ◽  
M. Penning de Vries ◽  
...  

Abstract. During recent years, volcanic emissions turned out to be a natural source of bromine compounds in the atmosphere. While the inital formation process of bromine monoxide (BrO) has been successfully studied in local ground-based measurements at quiescent degassing volcanoes worldwide, literature on the chemical evolution of BrO on large spatial and temporal scales is sparse. The first space-based observation of a volcanic BrO plume following the Kasatochi eruption in 2008 demonstrated the capability of satellite instruments to monitor such events on a global scale. In this study, we systematically examined GOME-2 observations from January 2007 until June 2011 for significantly enhanced BrO slant column densities (SCDs) in the vicinity of volcanic plumes. In total, 772 plumes from at least 37 volcanoes have been found by using sulphur dioxide (SO2) as a tracer for a volcanic plume. All captured SO2 plumes were subsequently analysed for a simultaneous enhancement of BrO and the data were checked for a possible spatial correlation between the two species. Additionally, the mean BrO/SO2 ratios for all volcanic plumes have been calculated by the application of a bivariate linear fit. A total number of 64 volcanic plumes from at least 11 different volcanoes showed clear evidence for BrO of volcanic origin, revealing large differences in the BrO/SO2 ratios (ranging from some 10−5 to several 10−4) and the spatial distribution of both species. A close correlation between SO2 and BrO occurred only for some of the observed eruptions or just in certain parts of the examined plumes. For other cases, only a rough spatial relationship was found. We discuss possible explanations for the occurrence of the different spatial SO2 and BrO distributions in aged volcanic plumes.


Author(s):  
Joshua M. White

This book offers a comprehensive examination of the shape and impact of piracy in the eastern half of the Mediterranean and the Ottoman Empire’s administrative, legal, and diplomatic response. In the late sixteenth and seventeenth centuries, piracy had a tremendous effect on the formation of international law, the conduct of diplomacy, the articulation of Ottoman imperial and Islamic law, and their application in Ottoman courts. Piracy and Law draws on research in archives and libraries in Istanbul, Venice, Crete, London, and Paris to bring the Ottoman state and Ottoman victims into the story for the first time. It explains why piracy exploded after the 1570s and why the Ottoman state was largely unable to marshal an effective military solution even as it responded dynamically in the spheres of law and diplomacy. By focusing on the Ottoman victims, jurists, and officials who had to contend most with the consequences of piracy, Piracy and Law reveals a broader range of piratical practitioners than the Muslim and Catholic corsairs who have typically been the focus of study and considers their consequences for the Ottoman state and those who traveled through Ottoman waters. This book argues that what made the eastern half of the Mediterranean basin the Ottoman Mediterranean, more than sovereignty or naval supremacy—which was ephemeral—was that it was a legal space. The challenge of piracy helped to define its contours.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Mariola Jabłońska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in the Upper Silesia conurbation in Poland and who had died from causes not related to a lung disorder were determined by transmission and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in the studied RLL tissue were almost exclusively carbonates, specifically Mg-calcite and calcite. These constituted 37% of the 1652 mineral particles examined. Mg-calcite predominated in the submicrometer size range, with a MgCO3 content up to 50 mol %. Magnesium plays a significant role in lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in the studied RLL tissue was negligible. The predominance of carbonates is explained by the increased CO2 fugacity in the RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC), followed by its transformation to calcite; (2) precipitation of Mg-ACC, followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC, causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than was observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


Sign in / Sign up

Export Citation Format

Share Document