scholarly journals The Modulation Effect on the ELVEs and Sprite Halos by Concentric Gravity Waves Based on the Electromagnetic Pulse Coupled Model

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 617
Author(s):  
Chao Wang ◽  
Ying Wen ◽  
Jinbo Zhang ◽  
Qilin Zhang ◽  
Juwei Qiu

By employing the finite-difference time-domain method, the processes of electric field variation and morphological development of the optical radiation field of ELVEs and sprite halos were simulated in this article. Simulations of ELVEs show two optical radiation field centers, with a concentrated luminous zone from 85 to 100 km and an inner weaker optical radiation center. The electric field exhibits an obvious sparse and dense ripple pattern induced by the concentric gravity waves (CGWs) at altitudes of 90–100 km, which mainly occurs during the decline period of electric field with a shallow steepness. The alternating distance of the variations in the sparse and dense patterns is about 40 km, which corresponds to the horizontal wavelength of the electric field. The CGWs induce significant deformation of the inner optical radiation field, even splitting into multiple luminous regions. Simulations of sprite halos indicate that the horizontal range of the electrical field generated by lightning current is within 50 km, and a strong local electric field formed in the region right above the lightning channel is due to the small-scale breakdown current. Thus, the increased electron density shields the upper regions and reduces the electrical field’s strength. The sprite halos luminous zone is pancake-shaped, and it originates at 85 km along with a downward developing trend. The disturbance of sprite halos’ luminescence caused by CGWs mainly occurs at about 80–100 km directly above the lightning channel, and the primary deformation zone is located within 30 km of the lightning channel, which is also the region with the most recognizable electric field disturbance.

2016 ◽  
Vol 43 (12) ◽  
pp. 5953-5959 ◽  
Author(s):  
Katherine A. Goodrich ◽  
Robert E. Ergun ◽  
Frederick D. Wilder ◽  
James Burch ◽  
Roy Torbert ◽  
...  

2018 ◽  
Vol 64 (247) ◽  
pp. 745-758 ◽  
Author(s):  
E. DE ANDRÉS ◽  
J. OTERO ◽  
F. NAVARRO ◽  
A. PROMIŃSKA ◽  
J. LAPAZARAN ◽  
...  

ABSTRACTWe have developed a two-dimensional coupled glacier–fjord model, which runs automatically using Elmer/Ice and MITgcm software packages, to investigate the magnitude of submarine melting along a vertical glacier front and its potential influence on glacier calving and front position changes. We apply this model to simulate the Hansbreen glacier–Hansbukta proglacial–fjord system, Southwestern Svalbard, during the summer of 2010. The limited size of this system allows us to resolve some of the small-scale processes occurring at the ice–ocean interface in the fjord model, using a 0.5 s time step and a 1 m grid resolution near the glacier front. We use a rich set of field data spanning the period April–August 2010 to constrain, calibrate and validate the model. We adjust circulation patterns in the fjord by tuning subglacial discharge inputs that best match observed temperature while maintaining a compromise with observed salinity, suggesting a convectively driven circulation in Hansbukta. The results of our model simulations suggest that both submarine melting and crevasse hydrofracturing exert important controls on seasonal frontal ablation, with submarine melting alone not being sufficient for reproducing the observed patterns of seasonal retreat. Both submarine melt and calving rates accumulated along the entire simulation period are of the same order of magnitude, ~100 m. The model results also indicate that changes in submarine melting lag meltwater production by 4–5 weeks, which suggests that it may take up to a month for meltwater to traverse the englacial and subglacial drainage network.


2009 ◽  
Vol 9 (22) ◽  
pp. 8825-8840 ◽  
Author(s):  
A. J. McDonald ◽  
S. E. George ◽  
R. M. Woollands

Abstract. A combination of POAM III aerosol extinction and CHAMP RO temperature measurements are used to examine the role of atmospheric gravity waves in the formation of Antarctic Polar Stratospheric Clouds (PSCs). POAM III aerosol extinction observations and quality flag information are used to identify Polar Stratospheric Clouds using an unsupervised clustering algorithm. A PSC proxy, derived by thresholding Met Office temperature analyses with the PSC Type Ia formation temperature (TNAT), shows general agreement with the results of the POAM III analysis. However, in June the POAM III observations of PSC are more abundant than expected from temperature threshold crossings in five out of the eight years examined. In addition, September and October PSC identified using temperature thresholding is often significantly higher than that derived from POAM III; this observation probably being due to dehydration and denitrification. Comparison of the Met Office temperature analyses with corresponding CHAMP observations also suggests a small warm bias in the Met Office data in June. However, this bias cannot fully explain the differences observed. Analysis of CHAMP data indicates that temperature perturbations associated with gravity waves may partially explain the enhanced PSC incidence observed in June (relative to the Met Office analyses). For this month, approximately 40% of the temperature threshold crossings observed using CHAMP RO data are associated with small-scale perturbations. Examination of the distribution of temperatures relative to TNAT shows a large proportion of June data to be close to this threshold, potentially enhancing the importance of gravity wave induced temperature perturbations. Inspection of the longitudinal structure of PSC occurrence in June 2005 also shows that regions of enhancement are geographically associated with the Antarctic Peninsula; a known mountain wave "hotspot". The latitudinal variation of POAM III observations means that we only observe this region in June–July, and thus the true pattern of enhanced PSC production may continue operating into later months. The analysis has shown that early in the Antarctic winter stratospheric background temperatures are close to the TNAT threshold (and PSC formation), and are thus sensitive to temperature perturbations associated with mountain wave activity near the Antarctic peninsula (40% of PSC formation). Later in the season, and at latitudes away from the peninsula, temperature perturbations associated with gravity waves contribute to about 15% of the observed PSC (a value which corresponds well to several previous studies). This lower value is likely to be due to colder background temperatures already achieving the TNAT threshold unaided. Additionally, there is a reduction in the magnitude of gravity waves perturbations observed as POAM III samples poleward of the peninsula.


2021 ◽  
Author(s):  
Masaru Yamamoto ◽  
Takumi Hirose ◽  
Kohei Ikeda ◽  
Masaaki Takahashi

<p>General circulation and waves are investigated using a T63 Venus general circulation model (GCM) with solar and thermal radiative transfer in the presence of high-resolution surface topography. This model has been developed by Ikeda (2011) at the Atmosphere and Ocean Research Institute (AORI), the University of Tokyo, and was used in Yamamoto et al. (2019, 2021). In the wind and static stability structures similar to the observed ones, the waves are investigated. Around the cloud-heating maximum (~65 km), the simulated thermal tides accelerate an equatorial superrotational flow with a speed of ~90 m/s<sup></sup>with rates of 0.2–0.5 m/s/(Earth day) via both horizontal and vertical momentum fluxes at low latitudes. Over the high mountains at low latitudes, the vertical wind variance at the cloud top is produced by topographically-fixed, short-period eddies, indicating penetrative plumes and gravity waves. In the solar-fixed coordinate system, the variances (i.e., the activity of waves other than thermal tides) of flow are relatively higher on the night-side than on the dayside at the cloud top. The local-time variation of the vertical eddy momentum flux is produced by both thermal tides and solar-related, small-scale gravity waves. Around the cloud bottom, the 9-day super-rotation of the zonal mean flow has a weak equatorial maximum and the 7.5-day Kelvin-like wave has an equatorial jet-like wind of 60-70 m/s. Because we discussed the thermal tide and topographically stationary wave in Yamamoto et al. (2021), we focus on the short-period eddies in the presentation.</p>


2021 ◽  
Author(s):  
Petr Kaspar ◽  
Ivana Kolmasova ◽  
Ondrej Santolik ◽  
Martin Popek ◽  
Pavel Spurny ◽  
...  

<p><span>Sprites and halos are transient luminous events occurring above thunderclouds. They can be observed simultaneously or they can also appear individually. Circumstances leading to initiation of these events are still not completely understood. In order to clarify the role of lightning channels of causative lightning return strokes and the corresponding thundercloud charge structure, we have developed a new model of electric field amplitudes at halo/sprite altitudes. It consists of electrostatic and inductive components of the electromagnetic field generated by the lightning channel in free space at a height of 15 km. Above this altitude we solve Maxwell’s equations self-consistently including the nonlinear effects of heating and ionization/attachment of the electrons. At the same time, we investigate the role of a development of the thundercloud charge structure and related induced charges above the thundercloud. We show how these charges lead to the different distributions of the electric field at the initiation heights of the halos and sprites. We adjust free parameters of the model using observations of halos and sprites at the Nydek TLE observatory and using measurements of luminosity curves of the corresponding return strokes measured by an array of fast photometers. The latter measurements are also used to set the boundary conditions of the model.</span></p>


2018 ◽  
Vol 99 (5) ◽  
pp. 1027-1040 ◽  
Author(s):  
D. R. Jackson ◽  
A. Gadian ◽  
N. P. Hindley ◽  
L. Hoffmann ◽  
J. Hughes ◽  
...  

AbstractGravity waves (GWs) play an important role in many atmospheric processes. However, the observation-based understanding of GWs is limited, and representing them in numerical models is difficult. Recent studies show that small islands can be intense sources of GWs, with climatologically significant effects on the atmospheric circulation. South Georgia, in the South Atlantic, is a notable source of such “small island” waves. GWs are usually too small scale to be resolved by current models, so their effects are represented approximately using resolved model fields (parameterization). However, the small-island waves are not well represented by such parameterizations, and the explicit representation of GWs in very-high-resolution models is still in its infancy. Steep islands such as South Georgia are also known to generate low-level wakes, affecting the flow hundreds of kilometers downwind. These wakes are also poorly represented in models.We present results from the South Georgia Wave Experiment (SG-WEX) for 5 July 2015. Analysis of GWs from satellite observations is augmented by radiosonde observations made from South Georgia. Simulations were also made using high-resolution configurations of the Met Office Unified Model (UM). Comparison with observations indicates that the UM performs well for this case, with realistic representation of GW patterns and low-level wakes. Examination of a longer simulation period suggests that the wakes generally are well represented by the model. The realism of these simulations suggests they can be used to develop parameterizations for use at coarser model resolutions.


2013 ◽  
Vol 52 (10) ◽  
pp. 2296-2311 ◽  
Author(s):  
Kristina Trusilova ◽  
Barbara Früh ◽  
Susanne Brienen ◽  
Andreas Walter ◽  
Valéry Masson ◽  
...  

AbstractAs the nonhydrostatic regional model of the Consortium for Small-Scale Modelling in Climate Mode (COSMO-CLM) is increasingly employed for studying the effects of urbanization on the environment, the authors extend its surface-layer parameterization by the Town Energy Budget (TEB) parameterization using the “tile approach” for a single urban class. The new implementation COSMO-CLM+TEB is used for a 1-yr reanalysis-driven simulation over Europe at a spatial resolution of 0.11° (~12 km) and over the area of Berlin at a spatial resolution of 0.025° (~2.8 km) for evaluating the new coupled model. The results on the coarse spatial resolution of 0.11° show that the standard and the new models provide 2-m temperature and daily precipitation fields that differ only slightly by from −0.1 to +0.2 K per season and ±0.1 mm day−1, respectively, with very similar statistical distributions. This indicates only a negligibly small effect of the urban parameterization on the model's climatology. Therefore, it is suggested that an urban parameterization may be omitted in model simulations on this scale. On the spatial resolution of 0.025° the model COSMO-CLM+TEB is able to better represent the magnitude of the urban heat island in Berlin than the standard model COSMO-CLM. This finding shows the importance of using the parameterization for urban land in the model simulations on fine spatial scales. It is also suggested that models could benefit from resolving multiple urban land use classes to better simulate the spatial variability of urban temperatures for large metropolitan areas on spatial scales below ~3 km.


2021 ◽  
Author(s):  
Min-Jee Kang ◽  
Hye-Yeong Chun

Abstract. In January 2020, unexpected easterly winds developed in the downward-propagating westerly quasi-biennial oscillation (QBO) phase. This event corresponds to the second QBO disruption in history, and it occurred four years after the first disruption that occurred in 2015/16. According to several previous studies, strong midlatitude Rossby waves propagating from the Southern Hemisphere (SH) during the SH winter likely initiated the disruption; nevertheless, the wave forcing that finally led to the disruption has not been investigated. In this study, we examine the role of equatorial waves and small-scale convective gravity waves (CGWs) in the 2019/20 QBO disruption using MERRA-2 global reanalysis data. In June–September 2019, unusually strong Rossby wave forcing originating from the SH decelerated the westerly QBO at 0°–5° N at ~50 hPa. In October–November 2019, vertically (horizontally) propagating Rossby waves and mixed Rossby–gravity (MRG) waves began to increase (decrease). From December 2019, contribution of the MRG wave forcing to the zonal wind deceleration was the largest, followed by the Rossby wave forcing originating from the Northern Hemisphere and the equatorial troposphere. In January 2020, CGWs provided 11 % of the total negative wave forcing at ~43 hPa. Inertia–gravity (IG) waves exhibited a moderate contribution to the negative forcing throughout. Although the zonal-mean precipitation was not significantly larger than the climatology, convectively coupled equatorial wave activities were increased during the 2019/20 disruption. As in the 2015/16 QBO disruption, the increased barotropic instability at the QBO edges generated more MRG waves at 70–90 hPa, and westerly anomalies in the upper troposphere allowed more westward IG waves and CGWs to propagate to the stratosphere. Combining the 2015/16 and 2019/20 disruption cases, Rossby waves and MRG waves can be considered the key factors inducing QBO disruption.


Sign in / Sign up

Export Citation Format

Share Document