scholarly journals In-Depth Analysis of Physicochemical Properties of Particulate Matter (PM10, PM2.5 and PM1) and Its Characterization through FTIR, XRD and SEM–EDX Techniques in the Foothills of the Hindu Kush Region of Northern Pakistan

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 124
Author(s):  
Farooq Usman ◽  
Bahadar Zeb ◽  
Khan Alam ◽  
Zhongwei Huang ◽  
Attaullah Shah ◽  
...  

The current study investigates the variation and physicochemical properties of ambient particulate matter (PM) in the very important location which lies in the foothills of the Hindu Kush ranges in northern Pakistan. This work investigates the mass concentration, mineral content, elemental composition and morphology of PM in three size fractions, i.e., PM1, PM2.5 and PM10, during the year of 2019. The collected samples were characterized by microscopic and spectroscopic techniques like Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) spectroscopy. During the study period, the average temperature, relative humidity, rainfall and wind speed were found to be 17.9 °C, 65.83%, 73.75 mm and 0.23 m/s, respectively. The results showed that the 24 h average mass concentration of PM10, PM2.5 and PM1 were 64 µgm−3, 43.9 µgm−3 and 22.4 µgm−3, respectively. The 24 h concentration of both PM10 and PM2.5 were 1.42 and 2.92 times greater, respectively, than the WHO limits. This study confirms the presence of minerals such as wollastonite, ammonium sulphate, wustite, illite, kaolinite, augite, crocidolite, calcite, calcium aluminosilicate, hematite, copper sulphate, dolomite, quartz, vaterite, calcium iron oxide, muscovite, gypsum and vermiculite. On the basis of FESEM-EDX analysis, 14 elements (O, C, Al, Si, Mg, Na, K, Ca, Fe, N, Mo, B, S and Cl) and six groups of PM (carbonaceous (45%), sulfate (13%), bioaerosols (8%), aluminosilicates (19%), quartz (10%) and nitrate (3%)) were identified.

2019 ◽  
Vol 29 (Suppl 2) ◽  
pp. s117-s122 ◽  
Author(s):  
Nathan C Eddingsaas ◽  
Edward C Hensel ◽  
Sean O'Dea ◽  
Peyton Kunselman ◽  
A Gary DiFrancesco ◽  
...  

ObjectivesPuffing topographies of waterpipe users vary widely as does the puff-to-puff topography of an individual user. The aim of this study was to determine if puff duration and flow rate have an effect on the characteristics of the mainstream emission from waterpipes, including total particulate matter (TPM), mass ratio of nicotine and mass concentration of volatile carbonyls.MethodsPuffing parameters were chosen to encompass a significant portion of the perimeter space observed from a natural environment study. Tested conditions were 150, 200 and 250 mL sec-1; each run at 2, 3.5 and 5 s durations; 25 s interpuff duration and ~100 puffs per session. Each session was run in quadruplicate using the Programmable Emissions System-2 (PES-2) emissions capture system under identical conditions. Particulate matter, for quantification of TPM and nicotine, was collected on filter pads every ~5 L of aerosol resulting in 6 to 25 samples per session. Volatile carbonyls were sampled using 2,4-Dinitrophenylhydrazine (DNPH)-coated silica.ResultsMass concentration of TPM linearly decreased with increased flow rate, with no dependency on puff duration. Nicotine mass ratio was independent of topography, with average mass ratio of nicotine to TPM of 0.0027±0.0002 (mg/mg). The main carbonyls observed were acetaldehyde and formaldehyde. Puff duration increased emissions of some carbonyls (eg, formaldehyde) but not others (eg, acetaldehyde).ConclusionsThe results presented here highlight that topographies influence the emissions generated from waterpipes including TPM, total nicotine and volatile carbonyls. For laboratory studies to be representative of user exposure, a range of topographies must be studied. Using a range of topographies within a controlled laboratory environment will better inform regulatory policy.


2013 ◽  
Vol 58 (2) ◽  
pp. 619-624 ◽  
Author(s):  
M. Szafarska ◽  
J. Iwaszko ◽  
K. Kudła ◽  
I. Łegowik

The main aim of the study was the evaluation of magnesium alloy surface treatment effectiveness using high-energy heat sources, i.e. a Yb-YAG Disk Laser and the GTAW method. The AZ91 and AM60 commercial magnesium alloys were subject to surface layer modification. Because of the physicochemical properties of the materials studied in case of the GTAW method, it was necessary to provide the welding stand with additional equipment. A novel two-torch set with torches operating in tandem was developed within the experiment. The effectiveness of specimen remelting using a laser and the GTAW method was verified based on macro- and microscopic examinations as well as in X-ray phase analysis and hardness measurements. In addition, the remelting parameters were optimised. The proposed treatment methodology enabled the achieving of the intended result and effective modification of a magnesium alloy surface layer.


1980 ◽  
Author(s):  
James Alfred Calkins ◽  
S. Jamiluddin ◽  
K. Bhuyan ◽  
A. Hussain

Author(s):  
Parisa Sadeghpour ◽  
Mohammad Haghighi ◽  
Mehrdad Esmaeili

Aim and Objective: Effect of two different modification methods for introducing Ni into ZSM-5 framework was investigated under high temperature synthesis conditions. The nickel successfully introduced into the MFI structures at different crystallization conditions to enhance the physicochemical properties and catalytic performance. Materials and Methods: A series of impregnated Ni/ZSM-5 and isomorphous substituted NiZSM-5 nanostructure catalysts were prepared hydrothermally at different high temperatures and within short times. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX), Brunner, Emmett and Teller-Barrett, Joyner and Halenda (BET-BJH), Fourier transform infrared (FTIR) and Temperature-programmed desorption of ammonia (TPDNH3) were applied to investigate the physicochemical properties. Results: Although all the catalysts showed pure silica MFI–type nanosheets and coffin-like morphology, using the isomorphous substitution for Ni incorporation into the ZSM-5 framework led to the formation of materials with lower crystallinity, higher pore volume and stronger acidity compared to using impregnation method. Moreover, it was found that raising the hydrothermal temperature increased the crystallinity and enhanced more uniform incorporation of Ni atoms in the crystalline structure of catalysts. TPD-NH3 analysis demonstrated that high crystallization temperature and short crystallization time of NiZSM-5(350-0.5) resulted in fewer weak acid sites and medium acid strength. The MTO catalytic performance was tested in a fixed bed reactor at 460ºC and GHSV=10500 cm3 /gcat.h. A slightly different reaction pathway was proposed for the production of light olefins over impregnated Ni/ZSM-5 catalysts based on the role of NiO species. The enhanced methanol conversion for isomorphous substituted NiZSM-5 catalysts could be related to the most accessible active sites located inside the pores. Conclusion: The impregnated Ni/ZSM-5 catalyst prepared at low hydrothermal temperature showed the best catalytic performance, while the isomorphous substituted NiZSM-5 prepared at high temperature was found to be the active molecular sieve regarding the stability performance.


2018 ◽  
Vol 21 (7) ◽  
pp. 495-500 ◽  
Author(s):  
Hassan A. Almarshad ◽  
Sayed M. Badawy ◽  
Abdalkarem F. Alsharari

Aim and Objective: Formation of the gallbladder stones is a common disease and a major health problem. The present study aimed to identify the structures of the most common types of gallbladder stones using X-ray spectroscopic techniques, which provide information about the process of stone formation. Material and Method: Phase and elemental compositions of pure cholesterol and mixed gallstones removed from gallbladders of patients were studied using energy-dispersive X-ray spectroscopy combined with scanning electron microscopy analysis and X-ray diffraction. Results: The crystal structures of gallstones which coincide with standard patterns were confirmed by X-ray diffraction. Plate-like cholesterol crystals with laminar shaped and thin layered structures were clearly observed for gallstone of pure cholesterol by scanning electron microscopy; it also revealed different morphologies from mixed cholesterol stones. Elemental analysis of pure cholesterol and mixed gallstones using energy-dispersive X-ray spectroscopy confirmed the different formation processes of the different types of gallstones. Conclusion: The method of fast and reliable X-ray spectroscopic techniques has numerous advantages over the traditional chemical analysis and other analytical techniques. The results also revealed that the X-ray spectroscopy technique is a promising technique that can aid in understanding the pathogenesis of gallstone disease.


1999 ◽  
Vol 23 (7) ◽  
pp. 418-419
Author(s):  
Simon J. Coles ◽  
Paul Faulds ◽  
Michael B. Hursthouse ◽  
David G. Kelly ◽  
Georgia C. Ranger ◽  
...  

Nickel(II) phosphine complexes are prepared with a series of diphenylalkenylphosphine ligands and characterised by single crystal X-ray diffraction and spectroscopic techniques.


2021 ◽  
pp. 174751982198965
Author(s):  
Guoqi Zhang

( E)-4-[2-(Pyridin-4-yl)vinyl]benzaldehyde, containing both a 4-vinylpyridine and an aldehyde functionality, is utilized to develop new, highly conjugated chalcone compounds and a bis-Schiff base azine compound. The chalcone-containing compounds are further explored for their protonation, methylation and silver(I) coordination chemistry using the pyridine moiety. In parallel, a cyano-containing analogue, ( E)-4-[2-(pyridin-4-yl)vinyl]benzonitrile is also synthesized and studied for its silver(I) coordination chemistry. These new compounds are fully characterized by mass spectrometry, elemental analysis and spectroscopic techniques. The methylated product of ( E)-1-(9-anthryl)-3-{4-[2-(pyridin-4-yl)vinyl]phenyl}prop-2-en-1-one and a silver complex of ( E)-4-[2-(pyridin-4-yl)vinyl]benzonitrile are structurally determined by X-ray crystallography.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Umar Shah ◽  
Deepak Dwivedi ◽  
Mark Hackett ◽  
Hani Al-Salami ◽  
Ranjeet P. Utikar ◽  
...  

AbstractKafirin, the hydrophobic prolamin storage protein in sorghum grain is enriched when the grain is used for bioethanol production to give dried distillers grain with solubles (DGGS) as a by-product. There is great interest in DDGS kafirin as a new source for biomaterials. There is however a lack of fundamental understanding of how the physicochemical properties of DDGS kafirin having been exposed to the high temperature conditions during ethanol production, compare to kafirin made directly from the grain. An understanding of these properties is required to catalyse the utilisation of DDGS kafirin for biomaterial applications. The aim of this study was to extract kafirin directly from sorghum grain and from DDGS derived from the same grain and, then perform a comparative investigation of the physicochemical properties of these kafirins in terms of: polypeptide profile by sodium-dodecyl sulphate polyacrylamide gel electrophoresis; secondary structure by Fourier transform infra-red spectroscopy and x-ray diffraction, self-assembly behaviour by small-angle x-ray scattering, surface morphology by scanning electron microscopy and surface chemical properties by energy dispersive x-ray spectroscopy. DDGS kafirin was found to have very similar polypeptide profile as grain kafirin but contained altered secondary structure with increased levels of β-sheets. The structure morphology showed surface fractals and surface elemental composition suggesting enhanced reactivity with possibility to endow interfacial wettability. These properties of DDGS kafirin may provide it with unique functionality and thus open up opportunities for it to be used as a novel food grade biomaterial.


2021 ◽  
Vol 53 (5) ◽  
pp. 494-508
Author(s):  
Anja Müller ◽  
Thoralf Krahl ◽  
Jörg Radnik ◽  
Andreas Wagner ◽  
Carsten Kreyenschulte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document