scholarly journals Analyzing the Neutron Parameters in the Accelerator Driven Subcritical Reactor Using the Mixture of Molten Pb-Bi as Both Target and Coolant

Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 95
Author(s):  
Tien Tran Minh

In this paper, the Accelerator Driven Subcritical Reactor (ADSR) was simulated based on the structure of the TRIGA-Mark II reactor by the MCNPX program. The proton beam interacts on the Pb-Bi molten target with various energy levels from 0.5 GeV to 2.0 GeV. The important neutron parameters to evaluate the operability of ADSR were calculated as: the neutron yields according to various thicknesses of the target and according to the energy of the incident proton beam; the effective neutron multiplication factor for various fuel mixtures, along with its stability for some fuel mixtures; the axial and radial distributions of the neutron flux along with the height and radius of the core. The obtained results had shown a good agreement in using Pb-Bi molten as the interaction target and coolant for ADSR.

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Tien Tran Minh ◽  
Dung Tran Quoc

In this paper, the accelerator-driven subcritical reactor (ADSR) is simulated based on structure of the TRIGA-Mark II reactor. A proton beam is accelerated and interacts on the lead target. Two cases of using lead are considered here: firstly, solid lead is referred to as spallation neutron target and water as the coolant; secondly, molten lead is considered both as a target and as a coolant. The proton beam in the energy range from 115 MeV to 2000 MeV interacts with the lead to create neutrons. The neutron parameters as neutron yield Yn/p, neutron multiplication factor k, the radial and axial distributions of the neutron flux in the core have been calculated by using MCNPX program. The results show that the neutron yield increases as the energies of the proton beam increases. When using the lead target, the differences between the neutron yield are from 4.2% to 14.2% depending on the energies of the proton beam. The proportion of uranium in the mixtures should be around 24% to produce an effective neutron multiplier factor greater than 0.9. The neutron fluxes are much higher than the same calculations for the TRIGA-Mark II reactor model using tungsten target and light water coolant.


2020 ◽  
Vol 18 ◽  
pp. 42-47
Author(s):  
V. I. Borysenko ◽  
◽  
V. V. Goranchuk ◽  

The peculiarities of development of neutron-physical model of the VVR-M research nuclear reactor in the SCALE calculation code are considered in the article. Models of separate core elements, which influence neutron-physical characteristics of VVR-M, have been developed. Simulation was performed using the CSAS6 control module. Validation of the VVR-M neutron-physical model, built in the SCALE calculation code, has been carried out by comparing the calculated value of the effective neutron multiplication factor with the critical reactor state at the beginning of seven fuel loads with the number of fuel assemblies in the core from 72 to 129. The model is developmed to determine the effective neutron multiplication factor in the reactor, as well as other neutron-physical characteristics, such as neutron spectrum, neutron flux density in various cells of the reactor. Thus, it is possible to conduct numerical experiments to determine the most optimal locations of research channels in the core of the VVR-M, to conduct physical experiments on the irradiation of the research samples, detectors, structural materials, etc. In the article, the simplifications accepted at construction of neutron-physical model of research nuclear reactor VVR-M in SCALE calculation code are presented. The main elements of the model are described: fuel assemblies, beryllium displacer, control rods.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


2020 ◽  
Vol 75 (8) ◽  
pp. 739-747
Author(s):  
Feng Hu ◽  
Yan Sun ◽  
Maofei Mei

AbstractComplete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors and E1, E2, M1, and M2 line strengths, oscillator strengths, transitions rates are reported for the low-lying 41 levels of Mo XXVIII, belonging to the n = 3 states (1s22s22p6)3s23p3, 3s3p4, and 3s23p23d. High-accuracy calculations have been performed as benchmarks in the request for accurate treatments of relativity, electron correlation, and quantum electrodynamic (QED) effects in multi-valence-electron systems. Comparisons are made between the present two data sets, as well as with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values including core-valence correction are found to be in a good agreement with other theoretical and experimental values. The present results are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing plasmas.


2017 ◽  
Vol 95 (9) ◽  
pp. 805-810 ◽  
Author(s):  
M. Raineri ◽  
M. Gallardo ◽  
J. Reyna Almandos ◽  
C.J.B. Pagan ◽  
R. Sarmiento

A pulsed discharge light source to study the six and seven times ionized xenon spectra in the 419–4642 Å region was used. A set of 40 transitions of Xe VII and 25 transitions of Xe VIII were classified for the first time. We revised the values for the previously known energy levels and extended the analysis for Xe VII to 10 new energy levels belonging to 5s6d, 5s7s and 5s7p, 4d95s25p even and odd configurations, respectively. Seven new energy levels of the core excited configuration 4d95s5d of Xe VIII are presented. For the prediction of the atomic parameters, energy levels, and transition, relativistic Hartree–Fock calculations were used.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Eduard Amromin

Cavitation within regions of flow separation appears in drifting vortices. A two-part computational method is employed for prediction of cavitation inception number there. The first part is an analysis of the average flow in separation regions without consideration of an impact of vortices. The second part is an analysis of equilibrium of the bubble within the core of a vortex located in the turbulent flow of known average characteristics. Computed cavitation inception numbers for axisymmetric flows are in the good agreement with the known experimental data.


Author(s):  
Elham Abdalrahem Bin Selim ◽  
Mohammed Hadi Al–Douh ◽  
Hassan Hadi Abdullah ◽  
Dahab Salim Al–Nohey

Two bis-Schiff Bases 1 and 2 are ligands that can coordinate with manganese metal to form stable complexes and have biological activity. Thermodynamic parameters, HOMO-LUMO energy levels and FTIR spectra of two ligands have been computed using B3LYP/6-311++G(d,p) functional of the DFT calculations. Both ligands are favored thermodynamically, and the ligand 1 has been shown to be more stable than ligand 2. The Polarizability values of two ligands have been investigated. The results refer that ligand 2 interacts earlier than ligand 1 to the metal ion. The FTIR spectra of two ligands have been evaluated. All results show the good agreement between the theoretical and experimental data.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lei Jichong ◽  
Xie Jinsen ◽  
Chen Zhenping ◽  
Yu Tao ◽  
Yang Chao ◽  
...  

This work is interested in verifying and analyzing the advanced neutronics assembly program KYLIN V2.0. Assembly calculations are an integral part of the two-step calculation for core design, and their accuracy directly affects the results of the core physics calculations. In this paper, we use the Doppler coefficient numerical benchmark problem and CPR1000 AFA-3G fuel assemblies to verify and analyze the advanced neutronics assembly program KYLIN V2.0 developed by the Nuclear Power Institute of China. The analysis results show that the Doppler coefficients calculated by KYLIN V2.0 are in good agreement with the results of other well-known nuclear engineering design software in the world; the power distributions of AFA-3G fuel assemblies are in good agreement with the results of the RMC calculations, it’s error distribution is in accordance with the normal distribution. It shows that KYLIN V2.0 has high calculation accuracy and meets the engineering design requirements.


2015 ◽  
Vol 29 (35n36) ◽  
pp. 1550248
Author(s):  
Hai-Feng Yang ◽  
Yong-Gang Tan ◽  
Zhong-Li Liu ◽  
Hong-Zhi Fu

In this paper, the statistical properties of energy levels are studied numerically for atom in parallel electric and magnetic fields, which is an ideal system to examine the contributions of external fields and ionic core to quantum chaos. The Stark maps of diamagnetic spectra and nearest neighbor spacing (NNS) distributions are obtained by diagonalization method incorporating core effect. We identify obvious level anti-crossing and large value of [Formula: see text] for barium, indicating that core effect has predominant contribution to chaotic dynamics in barium. To study the core effect in detail, we sweep the quantum defect artificially and find that larger core effect will undoubtedly induce stronger chaotic dynamics.


2017 ◽  
Vol 872 ◽  
pp. 399-404
Author(s):  
Zakaria Ibnorachid ◽  
Khalid El Bikri ◽  
Lhoucine Boutahar

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave as Euler-Bernoulli beams while the core layer as a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters. Two types of boundary conditions simple supported-simple-supported (SS-SS) and clamped-clamped (C-C) under the influence of materials properties and geometrical parameters are studied. The validation of results is done by comparing with another studies, which available in the literature and found good agreement between the studies.


Sign in / Sign up

Export Citation Format

Share Document