scholarly journals Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 268
Author(s):  
Govinda Sharma ◽  
Gerald Pfeffer ◽  
Timothy E. Shutt

Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.

2019 ◽  
Vol 16 (2) ◽  
pp. 43 ◽  
Author(s):  
Muhammad Mustakim Mohd Ghaztar ◽  
Nik Noor Idayu Nik Ibrahim ◽  
Sarani Zakaria ◽  
Ahmad Zafir Romli

Natural fibre is an economical material that often used in various applications due to its low in density, non-abrasiveness in processing and biodegradable. But, its usage in various applications is still limited due to the low in overall properties. The acceptable method to improve the properties of the fibres is by chemical treatment method that is costly, meticulous process and high energy demand. Thus, a new, simple and cost-effective fibre coating treatment method was developed which was able to improve the physical and morphological properties that open a new path for natural based materials to be used in a more robust application. In this study, the physical and morphological properties of various coated Kenaf fibres were analysed to comprehend the cutting behaviour of coated fibres after subjected to the pulverisation process. The Kenaf fibres were individually immersed in 1:4, 1:5 and 1:6 epoxy to acetone coating solutions prior cured, and pulverised consecutively using 5 mm, 1 mm, 0.5 mm and 0.25 mm mesh sizes aperture. The morphological characteristic was analysed using polarised optical and scanning electron microscope. The result showed that 1:6 coating ratio solution able to effectively coat the fibres’ aspect ratio that forming individual coated fibre which in long length pulverised fibres. Moreover, the low viscous 1:6 solution able to penetrate inside fibre structure that supported by density and fibre cross-section analysis compare to the other solutions. In future, this analysis is crucial to give insight on the coated fibres behaviour after subjected to the mechanical means of cutting process that later relates to the reinforcing mechanism in the composite samples.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1950
Author(s):  
Chun-Ping Huang ◽  
Yi-Wen Lin ◽  
Yu-Chuen Huang ◽  
Fuu-Jen Tsai

The eyes require a rich oxygen and nutrient supply; hence, the high-energy demand of the visual system makes it sensitive to oxidative stress. Excessive free radicals result in mitochondrial dysfunction and lead to retinal neurodegeneration, as an early stage of retinal metabolic disorders. Retinal cells are vulnerable because of their coordinated interaction and intricate neural networks. Nutraceuticals are believed to target multiple pathways and have shown neuroprotective benefits by scavenging free radicals and promoting mitochondrial gene expression. Furthermore, encouraging results demonstrate that nutraceuticals improve the organization of retinal cells and visual functions. This review discusses the mitochondrial impairments of retinal cells and the mechanisms underlying the neuroprotective effects of nutraceuticals. However, some unsolved problems still exist between laboratory study and clinical therapy. Poor bioavailability and bioaccessibility strongly limit their development. A new delivery system and improved formulation may offer promise for health care applications.


2021 ◽  
Vol 14 ◽  
Author(s):  
Krystal English ◽  
Michelle Craig Barton

Peripheral neuropathy, which is the result of nerve damage from lesions or disease, continues to be a major health concern due to the common manifestation of neuropathic pain. Most investigations into the development of peripheral neuropathy focus on key players such as voltage-gated ion channels or glutamate receptors. However, emerging evidence points to mitochondrial dysfunction as a major player in the development of peripheral neuropathy and resulting neuropathic pain. Mitochondrial dysfunction in neuropathy includes altered mitochondrial transport, mitochondrial metabolism, as well as mitochondrial dynamics. The mechanisms that lead to mitochondrial dysfunction in peripheral neuropathy are poorly understood, however, the Class IIb histone deacetylase (HDAC6), may play an important role in the process. HDAC6 is a key regulator in multiple mechanisms of mitochondrial dynamics and may contribute to mitochondrial dysregulation in peripheral neuropathy. Accumulating evidence shows that HDAC6 inhibition is strongly associated with alleviating peripheral neuropathy and neuropathic pain, as well as mitochondrial dysfunction, in in vivo and in vitro models of peripheral neuropathy. Thus, HDAC6 inhibitors are being investigated as potential therapies for multiple peripheral neuropathic disorders. Here, we review emerging studies and integrate recent advances in understanding the unique connection between peripheral neuropathy and mitochondrial dysfunction through HDAC6-mediated interactions.


2020 ◽  
Vol 36 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Larissa P. Govers ◽  
Hakan R. Toka ◽  
Ali Hariri ◽  
Stephen B. Walsh ◽  
Detlef Bockenhauer

AbstractKidneys have a high energy demand to facilitate the reabsorption of the glomerular filtrate. For this reason, renal cells have a high density of mitochondria. Mitochondrial cytopathies can be the result of a mutation in both mitochondrial and nuclear DNA. Mitochondrial dysfunction can lead to a variety of renal manifestations. Examples of tubular manifestations are renal Fanconi Syndrome, which is often found in patients diagnosed with Kearns-Sayre and Pearson’s marrow-pancreas syndrome, and distal tubulopathies, which result in electrolyte disturbances such as hypomagnesemia. Nephrotic syndrome can be a glomerular manifestation of mitochondrial dysfunction and is typically associated with focal segmental glomerular sclerosis on histology. Tubulointerstitial nephritis can also be seen in mitochondrial cytopathies and may lead to end-stage renal disease. The underlying mechanisms of these cytopathies remain incompletely understood; therefore, current therapies focus mainly on symptom relief. A better understanding of the molecular disease mechanisms is critical in order to improve treatments.


2019 ◽  
Vol 44 (6) ◽  
pp. 723-729 ◽  
Author(s):  
Andrey Y. Abramov ◽  
Plamena R. Angelova

Abstract Energy-producing organelles mitochondria are involved in a number of cellular functions. Deregulation of mitochondrial function due to mutations or effects of mitochondrial toxins is proven to be a trigger for diverse pathologies, including neurodegenerative disorders. Despite the extensive research done in the last decades, the mechanisms by which mitochondrial dysfunction leads to neuronal deregulation and cell death have not yet been fully elucidated. Brain cells are specifically dependent on mitochondria due to their high energy demands to maintain neuronal ion gradients and signal transduction, and also, to mediate neuronal health through the processes of mitochondrial calcium homeostasis, mitophagy, mitochondrial reactive oxygen species production and mitochondrial dynamics. Some of these processes have been independently implicated in the mechanism of neuronal loss in neurodegeneration. Moreover, it is increasingly recognised that these processes are interdependent and interact within the mitochondria to ensure proper neuronal function and survival.


2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Michael L.-H. Huang ◽  
Shannon Chiang ◽  
Danuta S. Kalinowski ◽  
Dong-Hun Bae ◽  
Sumit Sahni ◽  
...  

The mitochondrion is an essential organelle important for the generation of ATP for cellular function. This is especially critical for cells with high energy demands, such as neurons for signal transmission and cardiomyocytes for the continuous mechanical work of the heart. However, deleterious reactive oxygen species are generated as a result of mitochondrial electron transport, requiring a rigorous activation of antioxidative defense in order to maintain homeostatic mitochondrial function. Indeed, recent studies have demonstrated that the dysregulation of antioxidant response leads to mitochondrial dysfunction in human degenerative diseases affecting the nervous system and the heart. In this review, we outline and discuss the mitochondrial and oxidative stress factors causing degenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Friedreich’s ataxia. In particular, the pathological involvement of mitochondrial dysfunction in relation to oxidative stress, energy metabolism, mitochondrial dynamics, and cell death will be explored. Understanding the pathology and the development of these diseases has highlighted novel regulators in the homeostatic maintenance of mitochondria. Importantly, this offers potential therapeutic targets in the development of future treatments for these degenerative diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas Paß ◽  
Rudolf J. Wiesner ◽  
David Pla-Martín

Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Richard Seager ◽  
Laura Lee ◽  
Jeremy M. Henley ◽  
Kevin A. Wilkinson

Abstract Neurons are highly polarised, complex and incredibly energy intensive cells, and their demand for ATP during neuronal transmission is primarily met by oxidative phosphorylation by mitochondria. Thus, maintaining the health and efficient function of mitochondria is vital for neuronal integrity, viability and synaptic activity. Mitochondria do not exist in isolation, but constantly undergo cycles of fusion and fission, and are actively transported around the neuron to sites of high energy demand. Intriguingly, axonal and dendritic mitochondria exhibit different morphologies. In axons mitochondria are small and sparse whereas in dendrites they are larger and more densely packed. The transport mechanisms and mitochondrial dynamics that underlie these differences, and their functional implications, have been the focus of concerted investigation. Moreover, it is now clear that deficiencies in mitochondrial dynamics can be a primary factor in many neurodegenerative diseases. Here, we review the role that mitochondrial dynamics play in neuronal function, how these processes support synaptic transmission and how mitochondrial dysfunction is implicated in neurodegenerative disease.


2014 ◽  
Vol 306 (4) ◽  
pp. F367-F378 ◽  
Author(s):  
Ruochen Che ◽  
Yanggang Yuan ◽  
Songming Huang ◽  
Aihua Zhang

Mitochondrial dysfunction has gained recognition as a contributing factor in many diseases. The kidney is a kind of organ with high energy demand, rich in mitochondria. As such, mitochondrial dysfunction in the kidney plays a critical role in the pathogenesis of kidney diseases. Despite the recognized importance mitochondria play in the pathogenesis of the diseases, there is limited understanding of various aspects of mitochondrial biology. This review examines the physiology and pathophysiology of mitochondria. It begins by discussing mitochondrial structure, mitochondrial DNA, mitochondrial reactive oxygen species production, mitochondrial dynamics, and mitophagy, before turning to inherited mitochondrial cytopathies in kidneys (inherited or sporadic mitochondrial DNA or nuclear DNA mutations in genes that affect mitochondrial function). Glomerular diseases, tubular defects, and other renal diseases are then discussed. Next, acquired mitochondrial dysfunction in kidney diseases is discussed, emphasizing the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease and acute kidney injury, as their prevalence is increasing. Finally, it summarizes the possible beneficial effects of mitochondrial-targeted therapeutic agents for treatment of mitochondrial dysfunction-mediated kidney injury-genetic therapies, antioxidants, thiazolidinediones, sirtuins, and resveratrol-as mitochondrial-based drugs may offer potential treatments for renal diseases.


Reproduction ◽  
2000 ◽  
pp. 143-149 ◽  
Author(s):  
RM Sainz ◽  
RJ Reiter ◽  
JC Mayo ◽  
J Cabrera ◽  
DX Tan ◽  
...  

Pregnancy is a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement. Because of the increased intake and utilization of oxygen, increased levels of oxidative stress would be expected. In the present study, the degree of lipid peroxidation was examined in different tissues from non-pregnant and pregnant rats after the delivery of their young. Melatonin and other indole metabolites are known to be direct free radical scavengers and indirect antioxidants. Thus the effect of pinealectomy at 1 month before pregnancy on the accumulation of lipid damage was investigated in non-pregnant and pregnant rats after the delivery of their young. Malonaldehyde and 4-hydroxyalkenal concentrations were measured in the lung, uterus, liver, brain, kidney, thymus and spleen from intact and pinealectomized pregnant rats soon after birth of their young and at 14 and 21 days after delivery. The same parameters were also evaluated in intact and pinealectomized non-pregnant rats. Shortly after delivery, lipid oxidative damage was increased in lung, uterus, brain, kidney and thymus of the mothers. No differences were detected in liver and spleen. Pinealectomy enhanced this effect in the uterus and lung. It is concluded that during pregnancy high levels of oxidative stress induce an increase in oxidative damage to lipids, which in some cases is inhibited by the antioxidative actions of pineal indoles.


Sign in / Sign up

Export Citation Format

Share Document