scholarly journals The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation

Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 856
Author(s):  
Martina Musella ◽  
Claudia Galassi ◽  
Nicoletta Manduca ◽  
Antonella Sistigu

Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunology have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral responses, while leading immune dysfunction and disease progression. This dichotomy relies on the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving relationship between the host immune system and cancer, as we offer a view of the therapeutic strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network of Type I IFN triggered molecular pathways will help find a timely and immune“logical” way to exploit these cytokines for anticancer therapy.

2019 ◽  
Vol 20 (4) ◽  
pp. 895 ◽  
Author(s):  
Qiang Li ◽  
Chunfa Liu ◽  
Ruichao Yue ◽  
Saeed El-Ashram ◽  
Jie Wang ◽  
...  

Cyclic GMP-AMP synthase (cGAS) is an important cytosolic DNA sensor that plays a crucial role in triggering STING-dependent signal and inducing type I interferons (IFNs). cGAS is important for intracellular bacterial recognition and innate immune responses. However, the regulating effect of the cGAS pathway for bone marrow-derived dendritic cells (BMDCs) during Mycobacterium bovis (M. bovis) infection is still unknown. We hypothesized that the maturation and activation of BMDCs were modulated by the cGAS/STING/TBK1/IRF3 signaling pathway. In this study, we found that M. bovis promoted phenotypic maturation and functional activation of BMDCs via the cGAS signaling pathway, with the type I IFN and its receptor (IFNAR) contributing. Additionally, we showed that the type I IFN pathway promoted CD4+ T cells’ proliferation with BMDC during M. bovis infection. Meanwhile, the related cytokines increased the expression involved in this signaling pathway. These data highlight the mechanism of the cGAS and type I IFN pathway in regulating the maturation and activation of BMDCs, emphasizing the important role of this signaling pathway and BMDCs against M. bovis. This study provides new insight into the interaction between cGAS and dendritic cells (DCs), which could be considered in the development of new drugs and vaccines against tuberculosis.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3263-3271 ◽  
Author(s):  
Maria Montoya ◽  
Giovanna Schiavoni ◽  
Fabrizio Mattei ◽  
Ion Gresser ◽  
Filippo Belardelli ◽  
...  

Abstract Resting dendritic cells (DCs) are resident in most tissues and can be activated by environmental stimuli to mature into potent antigen-presenting cells. One important stimulus for DC activation is infection; DCs can be triggered through receptors that recognize microbial components directly or by contact with infection-induced cytokines. We show here that murine DCs undergo phenotypic maturation upon exposure to type I interferons (type I IFNs) in vivo or in vitro. Moreover, DCs either derived from bone marrow cells in vitro or isolated from the spleens of normal animals express IFN-α and IFN-β, suggesting that type I IFNs can act in an autocrine manner to activate DCs. Consistent with this idea, the ability to respond to type I IFN was required for the generation of fully activated DCs from bone marrow precursors, as DCs derived from the bone marrow of mice lacking a functional receptor for type I IFN had reduced expression of costimulatory and adhesion molecules and a diminished ability to stimulate naive T-cell proliferation compared with DCs derived from control bone marrow. Furthermore, the addition of neutralizing anti–IFN-α/β antibody to purified splenic DCs in vitro partially blocked the “spontaneous” activation of these cells, inhibiting the up-regulation of costimulatory molecules, secretion of IFN-γ, and T-cell stimulatory activity. These results show that DCs both secrete and respond to type I IFN, identifying type I interferons as autocrine DC activators.


2011 ◽  
Vol 79 (5) ◽  
pp. 2112-2119 ◽  
Author(s):  
Anne-Danielle C. Chessler ◽  
Kacey L. Caradonna ◽  
Akram Da'dara ◽  
Barbara A. Burleigh

ABSTRACTTrypanosoma cruzi, the protozoan parasite that causes human Chagas' disease, induces a type I interferon (IFN) (IFN-α/β) response during acute experimental infection in mice and in isolated primary cell types. To examine the potential impact of the type I IFN response in shaping outcomes in experimentalT. cruziinfection, groups of wild-type (WT) and type I IFN receptor-deficient (IFNAR−/−) 129sv/ev mice were infected with two differentT. cruzistrains under lethal and sublethal conditions and several parameters were measured during the acute stage of infection. The results demonstrate that type I IFNs are not required for early host protection againstT. cruzi. In contrast, under conditions of lethalT. cruzichallenge, WT mice succumbed to infection whereas IFNAR−/−mice were ultimately able to control parasite growth and survive.T. cruziclearance in and survival of IFNAR−/−mice were accompanied by higher levels of IFN-γ production by isolated splenocytes in response to parasite antigen. The suppression of IFN-γ in splenocytes from WT mice was independent of IL-10 levels. While the impact of type I IFNs on the production of IFN-γ and other cytokines/chemokines remains to be fully determined in the context ofT. cruziinfection, our data suggest that, under conditions of high parasite burden, type I IFNs negatively impact IFN-γ production, initiating a detrimental cycle that contributes to the ultimate failure to control infection. These findings are consistent with a growing theme in the microbial pathogenesis field in which type I IFNs can be detrimental to the host in a variety of nonviral pathogen infection models.


2010 ◽  
Vol 84 (13) ◽  
pp. 6549-6563 ◽  
Author(s):  
Erin L. Lousberg ◽  
Cara K. Fraser ◽  
Michael G. Tovey ◽  
Kerrilyn R. Diener ◽  
John D. Hayball

ABSTRACT Type I interferons (IFNs) are considered to be important mediators of innate immunity due to their inherent antiviral activity, ability to drive the transcription of a number of genes involved in viral clearance, and their role in the initiation of innate and adaptive immune responses. Due to the central role of type I IFNs, we sought to determine their importance in the generation of immunity to a recombinant vaccine vector fowlpox virus (FPV). In analyzing the role of type I IFNs in immunity to FPV, we show that they are critical to the secretion of a number of innate and proinflammatory cytokines, including type I IFNs themselves as well as interleukin-12 (IL-12), tumor necrosis factor-alpha (TNF-α), IL-6, and IL-1β, and that deficiency leads to enhanced virus-mediated antigen expression. Interestingly, however, type I IFNs were not required for adaptive immune responses to recombinant FPV even though plasmacytoid dendritic cells (pDCs), the primary producers of type I IFNs, have been shown to be requisite for this to occur. Furthermore, we provide evidence that the importance of pDCs may lie in their ability to capture and present virally derived antigen to T cells rather than in their capacity as professional type I IFN-producing cells.


2006 ◽  
Vol 80 (9) ◽  
pp. 4538-4545 ◽  
Author(s):  
Carolina B. López ◽  
Jacob S. Yount ◽  
Tamar Hermesh ◽  
Thomas M. Moran

ABSTRACT Adaptive immunity in response to virus infection involves the generation of Th1 cells, cytotoxic T cells, and antibodies. This type of immune response is crucial for the clearance of virus infection and for long-term protection against reinfection. Type I interferons (IFNs), the primary innate cytokines that control virus growth and spreading, can influence various aspects of adaptive immunity. The development of antiviral immunity depends on many viral and cellular factors, and the extent to which type I IFNs contribute to the generation of adaptive immunity in response to a viral infection is controversial. Using two strains (Cantell and 52) of the murine respiratory Sendai virus (SeV) with differential abilities to induce type I IFN production from infected cells, together with type I IFN receptor-deficient mice, we examined the role of type I IFNs in the generation of adaptive immunity. Our results show that type I IFNs facilitate virus clearance and enhance the migration and maturation of dendritic cells after SeV infection in vivo; however, soon after infection, mice clear the virus from their lungs and efficiently generate cytotoxic T cells independently of type I IFN signaling. Furthermore, animals that are unresponsive to type I IFN develop long-term anti-SeV immunity, including CD8+ T cells and antibodies. Significantly, this memory response is able to protect mice against challenge with a lethal dose of virus. In conclusion, our results show that primary and secondary anti-SeV adaptive immunities are developed normally in the absence of type I IFN responsiveness.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Daisy X Ji ◽  
Kristen C Witt ◽  
Dmitri I Kotov ◽  
Shally R Margolis ◽  
Alexander Louie ◽  
...  

Type I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. An important question is how type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to diverse bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that represses type I IFN transcription during bacterial infections. We generated Sp140-/- mice and find they are susceptible to infection by Legionella pneumophila and Mycobacterium tuberculosis. Susceptibility of Sp140-/- mice to bacterial infection was rescued by crosses to mice lacking the type I IFN receptor (Ifnar-/-). Our results implicate Sp140 as an important negative regulator of type I IFNs that is essential for resistance to bacterial infections.


2019 ◽  
Author(s):  
Jie Wang ◽  
Tariq Hussain ◽  
Kai Zhang ◽  
Yi Liao ◽  
Jiao Yao ◽  
...  

Abstract Background: Mycobacterium bovis (M. bovis) is the principal causative agent of bovine tuberculosis; however, it may also cause serious infection in human being. Type I IFN is a key factor in reducing viral multiplication and modulating host immune response against viral infection. However, the regulatory pathways of Type I IFN signaling during M. bovis infection are not yet fully explored. Here, we investigate the role of Type I IFN signaling in the pathogenesis of M. bovis infection in mice. Methods: C57BL/6 mice were treated with IFNAR1-blocking antibody or Isotype control 24 hour before M. bovis infection. After 21 and 84 days of infection, mice were sacrificed and role of Type I IFN signaling in the pathogenesis of M. bovis was investigated. ELISA and qRT-PCR was performed to detect the expression of Type I IFNs and related genes. M. bovis induced lung lesions were assessed by histopathological examination and viable bacterial count was determined by CFU assay. Results: We observed an abundant expression of Type I IFNs in the serum and lung tissues of M. bovis infected mice. In vivo blockade of Type I IFN signaling reduced the recruitment of neutrophils to the lung tissue, mediated the activation of macrophages leading to an increased pro-inflammatory profile and regulated the inflammatory cytokine production. However, no impact was observed on T cell recruitment and activation in the early acute phase of infection. Additionally, blocking of type I IFN signaling reduced bacterial burden in the infected mice as compared to untreated infected mice. Conclusions: Altogether, our results reveal that Type I IFN mediates a balance between M. bovis-mediated inflammatory reaction and host defense mechanism. Thus, modulating Type I IFN signaling could be exploited as a therapeutic strategy against a large repertoire of inflammatory disorders including tuberculosis.


Author(s):  
Daisy X. Ji ◽  
Kristen C. Witt ◽  
Dmitri I. Kotov ◽  
Shally R. Margolis ◽  
Alexander Louie ◽  
...  

AbstractType I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. How type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections, remains poorly understood. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to many bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that functions to repress the expression of type I IFNs during bacterial infections. We generated Sp140−/− mice and find they are susceptible to infection by diverse bacteria, including Listeria monocytogenes, Legionella pneumophila, and Mycobacterium tuberculosis. Susceptibility of Sp140−/− mice to bacterial infection was rescued by crosses to mice lacking the type I IFN receptor (Ifnar−/−). Our results implicate Sp140 as an important repressor of type I IFNs that is essential for resistance to bacterial infections.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3827-3827
Author(s):  
Julius Clemens Fischer ◽  
Caroline A Lindemans ◽  
Chia-Ching Lin ◽  
Alexander Wintges ◽  
Michael Bscheider ◽  
...  

Abstract The success of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by acute graft-versus-host disease (GVHD). Improving the procedure depends on identifying the mechanisms that contribute to this damaging T cell reactivity, while preserving graft-versus-leukemia (GVL) activity against hematopoietic malignancies. "Tonic" type I IFN signaling in BMT recipients and therapeutic application of recombinant IFN-α have been shown to play an important role in defining the balance between GVHD and GVL responses, but the molecular mechanisms inducing this protective response remains unknown. In this regard, pattern recognition receptors (PRRs) that detect cytosolic nucleic acids and lead to the production of large amounts of type I interferons (IFN-α/β) such as the family of RIG-I-like receptors (RLRs) are of particular interest. RLRs, a subfamily of the cytoplasmic DExD/H- box family of helicases, consist of three members: retinoic acid inducible gene I (RIG-I), melanoma differentiation factor 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2). RIG-I senses viral and bacterial RNA to induce the production of type I interferons, proinflammatory cytokines and inflammasome activation. Double-stranded RNA (dsRNA) carrying a 5'-triphosphate (3pRNA) has been identified as the natural ligand for RIG-I and serves as a selective trigger for RIG-I signaling. Although initially characterized as a main regulator for antiviral host defense, mice deficient in components of the RLR and type I IFN signaling pathway develop inflammatory bowel disease (IBD)-related pathologies. Furthermore, patients suffering from IBD show a highly significant downregulation of RIG-I in ileal epithelial cells and in a recent meta-analysis of genome-wide association studies (GWAS) data, IFNAR1 and MDA-5 were identified as primary candidate genes in susceptible loci for IBD. Together, these results indicate that RLRs and type I IFN signaling have important functions in the suppression of IBD by yet ill defined mechanisms. Given that the pathophysiology of GVHD shares several features with inflammatory bowel disease (IBD), we tested the role of the RIG-I pathway in the context of allo-HSCT. We utilized MAVS-deficient mice, which lack a common adapter for RIG-I signaling, as recipients in an MHC-disparate (BALB/c into B6) model of allo-HSCT. Compared to wild-type (WT) B6 mice, MAVS-KO mice receiving allogeneic BM + T cells displayed significantly worse GVHD mortality (Fig.1 A). Given the enhanced GVHD observed in the absence of RIG-I signaling, we hypothesized that selective engagement of RIG-I by 3pRNA (RIG-I ligand) in vivo would protect recipients from GVHD. Using a B6 into BALB/c model we observed that i.v. administration of a selective RIG-I ligand on d-1 significantly reduced mortality, weight loss and intestinal GVHD histopathology (Fig. 1B and data not shown). In addition, the translocation of LPS and microorganisms from the bowel lumen through the damaged intestinal mucosa to the systemic circulation during pre-transplant conditioning represents a crucial step in GVHD pathophysiology. We observed that administration of RIG-I ligand prior to allo-HSCT augmented intestinal barrier function measured by less fluorescence in the serum after FITC-dextran gavage compared to untreated WT recipients (Fig. 1C). Moreover, RIG-I stimulation augmented epithelial regeneration as determined by organoid formation from freshly isolated crypts (Fig. 1D) and inhibited activation of dendritic cells (DCs) during pre-transplant conditioning (Fig. 1E). To investigate the impact of 3pRNA administration during GVT, we used luciferase+ A20 bioluminescence in B6 into BALB/c tumor challenge recipients demonstrating that RIG-I ligands do not limit GVL (data not shown). Taken together, our results (i) uncover a previously unknown role of the RIG-I-MAVS signaling pathway in GVHD and (ii) offer a novel strategy to foster epithelial regeneration and inhibit antigen presentation during pre-transplant conditioning, while maintaining GVL. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 83 (2) ◽  
pp. 743-758 ◽  
Author(s):  
Teri R. Hoyt ◽  
Erin Dobrinen ◽  
Irina Kochetkova ◽  
Nicole Meissner

HIV infection results in a complex immunodeficiency due to loss of CD4+T cells, impaired type I interferon (IFN) responses, and B cell dysfunctions causing susceptibility to opportunistic infections such asPneumocystis murinapneumonia and unexplained comorbidities, including bone marrow dysfunctions. Type I IFNs and B cells critically contribute to immunity toPneumocystislung infection. We recently also identified B cells as supporters of on-demand hematopoiesis followingPneumocystisinfection that would otherwise be hampered due to systemic immune effects initiated in the context of a defective type I IFN system. While studying the role of type I IFNs in immunity toPneumocystisinfection, we discovered that mice lacking both lymphocytes and type I IFN receptor (IFrag−/−) developed progressive bone marrow failure following infection, while lymphocyte-competent type I IFN receptor-deficient mice (IFNAR−/−) showed transient bone marrow depression and extramedullary hematopoiesis. Lymphocyte reconstitution of lymphocyte-deficient IFrag−/−mice pointed to B cells as a key player in bone marrow protection. Here we define how B cells protect on-demand hematopoiesis followingPneumocystis lung infection in our model. We demonstrate that adoptive transfer of B cells into IFrag−/−mice protects early hematopoietic progenitor activity during systemic responses toPneumocystisinfection, thus promoting replenishment of depleted bone marrow cells. This activity is independent of CD4+T cell help and B cell receptor specificity and does not require B cell migration to bone marrow. Furthermore, we show that B cells protect on-demand hematopoiesis in part by induction of interleukin-10 (IL-10)- and IL-27-mediated mechanisms. Thus, our data demonstrate an important immune modulatory role of B cells duringPneumocystislung infection that complement the modulatory role of type I IFNs to prevent systemic complications.


Sign in / Sign up

Export Citation Format

Share Document