scholarly journals Wearing Cushioning Shoes Reduce Load Rates More Effectively in Post-Fatigue than in Pre-Fatigue during Landings

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 962
Author(s):  
Xi Wang ◽  
Liqin Deng ◽  
Wing-Kai Lam ◽  
Yang Yang ◽  
Xini Zhang ◽  
...  

Purpose: this study aimed to investigate the footwear cushioning effects on impact forces and joint kinematics of the lower extremity during bipedal drop landings before and after acute exercise-induced fatigue protocol. Methods: in this case, 15 male collegiate basketball athletes performed drop landings from a 60 cm platform wearing highly-cushioned shoes (HS) and less cushioned shoes (control shoes, CS) before and after acute fatigue-inducing exercises (i.e., shuttle run combined with multiple vertical jumps). Force plates and motion capturing systems were synchronised to measure ground reaction forces and kinematic data during drop landings. Maximum jump height was analysed with one-way ANOVA. Two-way repeated measure ANOVAs were performed on each of the tested variables to examine if there was significant main effects of shoe and fatigue as well as the interaction. The significance level was set to 0.05. Results: rearfoot peak impact forces and loading rates significantly reduced when the participants wore HS in pre- and post-fatigue conditions. The peak loading rates in forefoot significantly reduced when HS were worn in post-fatigue. Compared with pre-fatigue, wearing HS contributed to with 24% and 13% reduction in forefoot and rearfoot peak loading rates, respectively, and the occurrence times of first and second peak impact forces and loading rates were much later. In the post-fatigue, a significant increase in the initial contact and minimum angles of the ankle were observed in HS compared with CS. Conclusion: these findings suggest that footwear cushioning can reduce landing-related rearfoot impact forces regardless of fatigue conditions. In a situation where the neuromuscular activity is reduced or absent such as post-fatigue wearing better cushioning shoes show superior attenuation, as indicated by lower forefoot and rearfoot impacts.

2001 ◽  
Vol 17 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Jeremy J. Bauer ◽  
Robyn K. Fuchs ◽  
Gerald A. Smith ◽  
Christine M. Snow

Drop landings increase hip bone mass in children. However, force characteristics from these landings have not been studied. We evaluated ground and hip joint reaction forces, average loading rates, and changes across multiple trials from drop landings associated with osteogenesis in children. Thirteen prepubescent children who had previously participated in a bone loading program volunteered for testing. They performed 100 drop landings onto a force plate. Ground reaction forces (GRF) and two-dimensional kinematic data were recorded. Hip joint reaction forces were calculated using inverse dynamics. Maximum GRF were 8.5 ± 2.2 body weight (BW). At initial contact, GRF were 5.6 ± 1.4 BW while hip joint reactions were 4.7 ± 1.4 BW. Average loading rates for GRF were 472 ± 168 BW/s. Ground reaction forces did not change significantly across trials for the group. However, 5 individuals showed changes in max GRF across trials. Our data indicate that GRF are attenuated 19% to the hip at the first impact peak and 49% at the second impact peak. Given the skeletal response from the drop landing protocol and our analysis of the associated force magnitudes and average loading rates, we now have a data point on the response surface for future study of various combinations of force, rate, and number of load repetitions for increasing bone in children.


2014 ◽  
Vol 6 (2) ◽  
pp. 29-34
Author(s):  
Nirmala Limbu ◽  
Ramanjan Sinha ◽  
Meenakshi Sinha ◽  
Bishnu Hari Paudel

Objective: We aimed to investigate how EEG frequency bands change in females in response to acute exercise compared to males.Methods: Consenting healthy adult females (n=15) & males (n=15) bicycled an ergometer at 50% HRmax for 20 min. EEG was recorded using 10-20 system from mid-frontal (F4 & F3), central (C4 & C3), parietal (P4 & P3), temporal (T4 & T3) & occipital (O2 & O1) regions. Exercise-induced EEG changes were compared between two sexes by Mann Whitney test. EEG power (μV2) is presented as median & interquartile range.Results: In females, as compared to males, resting right side delta, alpha, and beta activities were more in almost all recorded sites [delta: F4= 49.82 (44.23-63.56) vs. 35.5 (32.70-44.44), p < 0.001; etc], [alpha F4: 127.62 (112.89-149.03) vs. 49.36 (46.37-52.98), p < 0.001; etc], [beta F4= 18.96 (15.83-25.38)  vs. 14.77 (10.34-17.55), p < 0.05; C4= 21.16 (18.4-25.9) vs. 15.48 (9.66-19.40), p < 0.01; etc]. Similarly, females resting right theta activity was more in parietal [P4= 33.04 (25.1-42.41) vs. 22.3 (18.36-34.33), p < 0.05] & occipital [O2= 50.81 (30.64-66.8) vs. 26.85 (22.18-34.42), p < 0.001] regions than in males. They had similar picture on the left side also. The delta values of right alpha power was less in female in frontal [F4= -11.61 (-45.24 -3.64) vs. 9.48 (1.05-16.58), p < 0.01] and central [C4= -72 (-32.98-9.48) vs. 22.69 (13.03-33.05), p < 0.01] regions compared to males. Also, they had less delta values of left central alpha [C3= -8.32 (-32.65-6.1) vs. 16.5 (0.36-36.36), p < 0.01] and temporal beta [T3= -6.29 (-10.09- -1.49) vs. 1.24 (-0.84- 2.8), p < 0.001] power compared to males.Conclusion: At rest females may have high EEG powers in different bands. In response to acute exercise, they respond in reverse way as compared to males.DOI: http://dx.doi.org/10.3126/ajms.v6i2.11116Asian Journal of Medical Sciences Vol.6(2) 2015 30-35


2011 ◽  
Vol 20 (3-4) ◽  
pp. 113-130 ◽  
Author(s):  
Colin Utz-Meagher ◽  
John Nulty ◽  
Lisa Holt

Comparative Analysis of Barefoot and Shod Running This study investigated the biomechanical difference between running barefoot and shod before and after a barefoot training program (BTP). Foot angles at contact (FA), contact time (CT), stride length (SL), initial contact force (ICF), and total peak force (TPF) in shod and unshod runners was analyzed. Fourteen collegiate runners attended 12 total sessions over a two week period. Subjects performed a baseline trial, running eight (10-20 meter) repetitions, four barefoot and four shod, at three different stations; running over a force plate, running in front of a SONY DCR-HC52 video camera (30fps) and running in front of a Casio Exilim Pro EX-F1 camera (300fps). A Post-Test (PT) was conducted at the end of the BTP. A repeated measure ANOVA showed significance (p<.05) in the Test factor, BTP; lowering participants FA mean from 18.8deg+/-.9deg to 5.6deg+/-15.1deg, CT mean from .221m+/-.02m to .2m+/-.03m, and TPF mean from 1427.4N+/-312.9N to 1348.2N+/-269.4N. A repeated measure ANOVA showed significance (p<.05) in the Condition factor (shod vs. unshod); lowering participants FA mean from 23.1deg+/-12.6deg to 1.3deg+/-14.4deg, SL mean from .9m+/-.1m to .8m+/-.1m, and ICF mean from 1465.3N+/- 369.6N to 1324.7N+/-379.4N. Running barefoot and following a BTP alters running biomechanics in ways that may decrease running related injuries.


2018 ◽  
Vol 5 (3) ◽  
pp. 180044 ◽  
Author(s):  
Ian J. Wallace ◽  
Elizabeth Koch ◽  
Nicholas B. Holowka ◽  
Daniel E. Lieberman

Despite substantial recent interest in walking barefoot and in minimal footwear, little is known about potential differences in walking biomechanics when unshod versus minimally shod. To test the hypothesis that heel impact forces are similar during barefoot and minimally shod walking, we analysed ground reaction forces recorded in both conditions with a pedography platform among indigenous subsistence farmers, the Tarahumara of Mexico, who habitually wear minimal sandals, as well as among urban Americans wearing commercially available minimal sandals. Among both the Tarahumara ( n  = 35) and Americans ( n  = 30), impact peaks generated in sandals had significantly ( p  < 0.05) higher force magnitudes, slower loading rates and larger vertical impulses than during barefoot walking. These kinetic differences were partly due to individuals' significantly greater effective mass when walking in sandals. Our results indicate that, in general, people tread more lightly when walking barefoot than in minimal footwear. Further research is needed to test if the variations in impact peaks generated by walking barefoot or in minimal shoes have consequences for musculoskeletal health.


1987 ◽  
Vol 63 (4) ◽  
pp. 1319-1323 ◽  
Author(s):  
V. A. Koivisto ◽  
H. Yki-Jarvinen

Acute exercise increases insulin binding to its receptors on blood cells. Whether the enhanced insulin binding explains the exercise-induced increase in glucose uptake is unclear, since insulin binding and glucose uptake have not been measured simultaneously in a target tissue of insulin. In this study, we determined insulin binding and the rate of glucose transport in adipocytes obtained by needle biopsy from 10 healthy men before and after 3 h of cycle-ergometric exercise. During the exercise, plasma glucose (P less than 0.01) and insulin (P less than 0.001) fell and serum free fatty acid level rose 4.3-fold (P less than 0.001). 125I-insulin binding to adipocytes remained unchanged during exercise. The rate of basal glucose transport clearance fell from 28.1 +/- 5.7 fl.cell-1.s-1 to 22.9 +/- 5.6 fl.cell-1.s-1 (P less than 0.005), and the insulin-stimulated increase in glucose transport rate rose from 196 +/- 26 to 279 +/- 33% (P less than 0.025) during the exercise. Thus, in the adipocytes during exercise, the basal glucose transport rate and the responsiveness of glucose transport to insulin changed in the absence of alterations in insulin binding. These data indicate that the exercise-induced changes in insulin binding show tissue specificity and do not always parallel alterations in glucose transport.


2013 ◽  
Vol 304 (12) ◽  
pp. E1379-E1390 ◽  
Author(s):  
Brynjulf Mortensen ◽  
Janne R. Hingst ◽  
Nicklas Frederiksen ◽  
Rikke W. W. Hansen ◽  
Caroline S. Christiansen ◽  
...  

Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling. We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 h of acute exercise performed at the same relative workload before and after 12 wk of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status were determined by Western blotting. AMPK activities were measured using activity assays. Protein levels of AMPKα1 and -γ1 were significantly increased, whereas AMPKγ3 levels decreased with training independently of group. The LBW group had higher exercise-induced AMPK Thr172 phosphorylation before training and higher exercise-induced ACC2 Ser221 phosphorylation both before and after training compared with NBW. Despite exercise being performed at the same relative intensity (65% of V̇o2peak), the acute exercise response on AMPK Thr172, ACC2 Ser221, AMPKα2β2γ1, and AMPKα2β2γ3 activities, GS activity, and adenine nucleotides as well as hexokinase II mRNA levels were all reduced after exercise training. Increased exercise-induced muscle AMPK activation and ACC2 Ser221 phosphorylation in LBW subjects may indicate a more sensitive AMPK system in this population. Long-term exercise training may reduce the need for AMPK to control energy turnover during exercise. Thus, the remaining γ3-associated AMPK activation by acute exercise after exercise training might be sufficient to maintain cellular energy balance.


2018 ◽  
Vol 315 (4) ◽  
pp. E723-E733 ◽  
Author(s):  
Randall F. D’Souza ◽  
Jonathan S. T. Woodhead ◽  
Nina Zeng ◽  
Cherie Blenkiron ◽  
Troy L. Merry ◽  
...  

MicroRNAs (miRNAs) regulate gene expression via transcript degradation and translational inhibition, and they may also function as long distance signaling molecules. Circulatory miRNAs are either protein-bound or packaged within vesicles (exosomes). Ten young men (24.6 ± 4.0 yr) underwent a single bout of high-intensity interval cycling exercise. Vastus lateralis biopsies and plasma were collected immediately before and after exercise, as well as 4 h following the exercise bout. Twenty-nine miRNAs previously reported to be regulated by acute exercise were assessed within muscle, venous plasma, and enriched circulatory exosomes via qRT-PCR. Of the 29 targeted miRNAs, 11 were altered in muscle, 8 in plasma, and 9 in the exosome fraction. Although changes in muscle and plasma expression were bidirectional, all regulated exosomal miRNAs increased following exercise. Three miRNAs were altered in all three sample pools (miR-1-3p, -16-5p, and -222-3p), three in both muscle and plasma (miR-21-5p, -134-3p, and -107), three in both muscle and exosomes (miR-23a-3p, -208a-3p, and -150-5p), and three in both plasma and exosomes (miR-486-5p, -126-3p, and -378a-5p). There was a marked discrepancy between the observed alterations between sample pools. A subset of exosomal miRNAs increased in abundance following exercise, suggesting an exercise-induced release of exosomes enriched in specific miRNAs. The uniqueness of the exosomal miRNA response suggests its relevance as a sample pool that needs to be further explored in better understanding biological functions.


2009 ◽  
Vol 34 (6) ◽  
pp. 1098-1107 ◽  
Author(s):  
Louise Croft ◽  
Jonathan D. Bartlett ◽  
Don P.M. MacLaren ◽  
Thomas Reilly ◽  
Louise Evans ◽  
...  

This aims of this study were to investigate the effects of carbohydrate availability during endurance training on the plasma interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α response to a subsequent acute bout of high-intensity interval exercise. Three groups of recreationally active males performed 6 weeks of high-intensity interval running. Groups 1 (LOW+GLU) and 2 (LOW+PLA) trained twice per day, 2 days per week, and consumed a 6.4% glucose or placebo solution, respectively, before every second training session and at regular intervals throughout exercise. Group 3 (NORM) trained once per day, 4 days per week, and consumed no beverage during training. Each group performed 50 min of high-intensity interval running at the same absolute workloads before and after training. Muscle glycogen utilization in the gastrocnemius muscle during acute exercise was reduced (p < 0.05) in all groups following training, although this was not affected by training condition. Plasma IL-6 concentration increased (p < 0.05) after acute exercise in all groups before and after training. Furthermore, the magnitude of increase was reduced (p < 0.05) following training. This training-induced attenuation in plasma IL-6 increase was similar among groups. Plasma IL-8 concentration increased (p < 0.05) after acute exercise in all groups, although the magnitude of increase was not affected (p > 0.05) by training. Acute exercise did not increase (p > 0.05) plasma TNF-α when undertaken before or after training. Data demonstrate that the exercise-induced increase in plasma IL-6 concentration in response to customary exercise is attenuated by previous exercise training, and that this attenuation appears to occur independent of carbohydrate availability during training.


2015 ◽  
Vol 119 (2) ◽  
pp. 124-134 ◽  
Author(s):  
David de Gonzalo-Calvo ◽  
Alberto Dávalos ◽  
Ana Montero ◽  
Ángela García-González ◽  
Iryna Tyshkovska ◽  
...  

While moderate acute exercise has been associated with strong anti-inflammatory mechanisms, strenuous exercise has been linked to deleterious inflammatory perturbations. It is therefore fundamental to elucidate the mechanisms that regulate the exercise-induced inflammatory cascade. Information on novel regulators such as circulating inflammatory microRNAs (c-inflammamiRs) is incomplete. In this study, we evaluated the response of a panel of c-inflammamiRs to different doses of acute aerobic exercise. We first studied the exercise-induced inflammatory cascade in serum samples of nine active middle-aged males immediately before and after (0 h, 24 h, 72 h) 10-km, half-marathon, and marathon races. Next, we analyzed the circulating profile of 106 specific c-inflammamiRs immediately before) and after (0 h, 24 h) 10-km (low inflammatory response) and marathon (high inflammatory response) races. Analysis of classical inflammatory parameters revealed a dose-dependent effect of aerobic exercise on systemic inflammation, with higher levels detected after marathon. We observed an increase in miR-150-5p immediately after the 10-km race. Levels of 12 c-inflammamiRs were increased immediately after the marathon (let-7d-3p, let-7f-2-3p, miR-125b-5p, miR-132-3p, miR-143-3p, miR-148a-3p, miR-223-3p, miR-223-5p, miR-29a-3p, miR-34a-5p, miR-424-3p, and miR-424-5p). c-inflammamiRs returned to basal levels after 24 h. Correlation and in silico analyses supported a close association between the observed c-inflammamiR pattern and regulation of the inflammatory process. In conclusion, we found that different doses of acute aerobic exercise induced a distinct and specific c-inflammamiR response, which may be associated with control of the exercise-induced inflammatory cascade. Our findings point to c-inflammamiRs as potential biomarkers of exercise-induced inflammation, and hence, exercise dose.


Sign in / Sign up

Export Citation Format

Share Document