scholarly journals Heel impact forces during barefoot versus minimally shod walking among Tarahumara subsistence farmers and urban Americans

2018 ◽  
Vol 5 (3) ◽  
pp. 180044 ◽  
Author(s):  
Ian J. Wallace ◽  
Elizabeth Koch ◽  
Nicholas B. Holowka ◽  
Daniel E. Lieberman

Despite substantial recent interest in walking barefoot and in minimal footwear, little is known about potential differences in walking biomechanics when unshod versus minimally shod. To test the hypothesis that heel impact forces are similar during barefoot and minimally shod walking, we analysed ground reaction forces recorded in both conditions with a pedography platform among indigenous subsistence farmers, the Tarahumara of Mexico, who habitually wear minimal sandals, as well as among urban Americans wearing commercially available minimal sandals. Among both the Tarahumara ( n  = 35) and Americans ( n  = 30), impact peaks generated in sandals had significantly ( p  < 0.05) higher force magnitudes, slower loading rates and larger vertical impulses than during barefoot walking. These kinetic differences were partly due to individuals' significantly greater effective mass when walking in sandals. Our results indicate that, in general, people tread more lightly when walking barefoot than in minimal footwear. Further research is needed to test if the variations in impact peaks generated by walking barefoot or in minimal shoes have consequences for musculoskeletal health.

2006 ◽  
Vol 3 (4) ◽  
pp. 209-216 ◽  
Author(s):  
Pia Gustås ◽  
Christopher Johnston ◽  
Stig Drevemo

AbstractThe objective of the present study was to compare the hoof deceleration and ground reaction forces following impact on two different surfaces. Seven unshod Standardbreds were trotted by hand at 3.0–5.7 m s− 1 over a force plate covered by either of the two surfaces, sandpaper or a 1 cm layer of sand. Impact deceleration data were recorded from one triaxial accelerometer mounted on the fore- and hind hooves, respectively. Ground reaction force data were obtained synchronously from a force plate, sampled at 4.8 kHz. The differences between the two surfaces were studied by analysing representative deceleration and force variables for individual horses. The maximum horizontal peak deceleration and the loading rates of the vertical and the horizontal forces were significantly higher on sandpaper compared with the sand surface (P < 0.001). In addition, the initial vertical deceleration was significantly higher on sandpaper in the forelimb (P < 0.001). In conclusion, it was shown that the different qualities of the ground surface result in differences in the hoof-braking pattern, which may be of great importance for the strength of the distal horse limb also at slow speeds.


2006 ◽  
Vol 22 (3) ◽  
pp. 230-233 ◽  
Author(s):  
David R. Mullineaux ◽  
Clare E. Milner ◽  
Irene S. Davis ◽  
Joseph Hamill

The appropriateness of normalizing data, as one method to reduce the effects of a covariate on a dependent variable, should be evaluated. Using ratio, 0.67-nonlinear, and fitted normalizations, the aim of this study was to investigate the relationship between ground reaction force variables and body mass (BM). Ground reaction forces were recorded for 40 female subjects running at 3.7 ± 0.18 m·s–1 (mass = 58 ± 6 kg). The explained variance for mass to forces (peak-impact-vertical = 70%; propulsive-vertical = 27%; braking = 40%) was reduced to < 0.1% for mass to ratio normalized forces (i.e., forces/BM1) with statistically significantly different power exponents (p < 0.05). The smaller covariate effect of mass on loading rate variables of 2–16% was better removed through fitted normalization (e.g., vertical-instantaneous-loading-rate/BM0.69±0.93; ±95% CI) with nonlinear power exponents ranging from 0.51 to 1.13. Generally, these were similar to 0.67 as predicted through dimensionality theory, but, owing to the large confidence intervals, these power exponents were not statistically significantly different from absolute or ratio normalized data (p > 0.05). Further work is warranted to identify the appropriate method to normalize loading rates either to mass or to another covariate. Ratio normalization of forces to mass, as predicted through Newtonian mechanics, is recommended for comparing subjects of different masses.


2019 ◽  
Vol 47 (8) ◽  
pp. 1975-1983 ◽  
Author(s):  
Karsten Hollander ◽  
Dominik Liebl ◽  
Stephanie Meining ◽  
Klaus Mattes ◽  
Steffen Willwacher ◽  
...  

Background: Previous studies have shown that changing acutely from shod to barefoot running induces several changes to running biomechanics, such as altered ankle kinematics, reduced ground-reaction forces, and reduced loading rates. However, uncertainty exists whether these effects still exist after a short period of barefoot running habituation. Purpose/Hypothesis: The purpose was to investigate the effects of a habituation to barefoot versus shod running on running biomechanics. It was hypothesized that a habituation to barefoot running would induce different adaptations of running kinetics and kinematics as compared with a habituation to cushioned footwear running or no habituation. Study Design: Controlled laboratory study. Methods: Young, physically active adults without experience in barefoot running were randomly allocated to a barefoot habituation group, a cushioned footwear group, or a passive control group. The 8-week intervention in the barefoot and footwear groups consisted of 15 minutes of treadmill running at 70% of VO2 max (maximal oxygen consumption) velocity per weekly session in the allocated footwear. Before and after the intervention period, a 3-dimensional biomechanical analysis for barefoot and shod running was conducted on an instrumented treadmill. The passive control group did not receive any intervention but was also tested prior to and after 8 weeks. Pre- to posttest changes in kinematics, kinetics, and spatiotemporal parameters were then analyzed with a mixed effects model. Results: Of the 60 included participants (51.7% female; mean ± SD age, 25.4 ± 3.3 years; body mass index, 22.6 ± 2.1 kg·m-2), 53 completed the study (19 in the barefoot habituation group, 18 in the shod habituation group, and 16 in the passive control group). Acutely, running barefoot versus shod influenced foot strike index and ankle, foot, and knee angles at ground contact ( P < .001), as well as vertical average loading rate ( P = .003), peak force ( P < .001), contact time ( P < .001), flight time ( P < .001), step length ( P < .001), and cadence ( P < .001). No differences were found for average force ( P = .391). After the barefoot habituation period, participants exhibited more anterior foot placement ( P = .006) when running barefoot, while no changes were observed in the footwear condition. Furthermore, barefoot habituation increased the vertical average loading rates in both conditions (barefoot, P = .01; shod, P = .003) and average vertical ground-reaction forces for shod running ( P = .039). All other outcomes (ankle, foot, and knee angles at ground contact and flight time, contact time, cadence, and peak forces) did not change significantly after the 8-week habituation. Conclusion: Changing acutely from shod to barefoot running in a habitually shod population increased the foot strike index and reduced ground-reaction force and loading rates. After the habituation to barefoot running, the foot strike index was further increased, while the force and average loading rates also increased as compared with the acute barefoot running situation. The increased average loading rate is contradictory to other studies on acute adaptations of barefoot running. Clinical Relevance: A habituation to barefoot running led to increased vertical average loading rates. This finding was unexpected and questions the generalizability of acute adaptations to long-term barefoot running. Sports medicine professionals should consider these adaptations in their recommendations regarding barefoot running as a possible measure for running injury prevention. Registration: DRKS00011073 (German Clinical Trial Register).


2019 ◽  
Vol 9 (24) ◽  
pp. 5493 ◽  
Author(s):  
Zhen Luo ◽  
Xini Zhang ◽  
Junqing Wang ◽  
Yang Yang ◽  
Yongxin Xu ◽  
...  

Purpose: This study aimed to determine the changes in lower extremity biomechanics during running-induced fatigue intervention. Methods: Fourteen male recreational runners were required to run at 3.33 m/s until they could no longer continue running. Ground reaction forces (GRFs) and marker trajectories were recorded intermittently every 2 min to quantify the impact forces and the lower extremity kinematics and kinetics during the fatiguing run. Blood lactate concentration (BLa) was also collected before and after running. Results: In comparison with the beginning of the run duration, (1) BLa significantly increased immediately after running, 4 min after running, and 9 min after running; (2) no changes were observed in vertical/anterior–posterior GRF and loading rates; (3) the hip joint range of motion (θROM) significantly increased at 33%, 67%, and 100% of the run duration, whereas θROM of the knee joint significantly increased at 67%; (4) no changes were observed in ankle joint kinematics and peak joint moment at the ankle, knee, and hip; and (5) vertical and ankle stiffness decreased at 67% and 100% of the run duration. Conclusion: GRF characteristics did not vary significantly throughout the fatiguing run. However, nonlinear adaptations in lower extremity kinematics and kinetics were observed. In particular, a “soft landing” strategy, achieved by an increased θROM at the hip and knee joints and a decreased vertical and ankle stiffness, was initiated from the mid-stage of a fatiguing run to potentially maintain similar impact forces.


2013 ◽  
Vol 25 (1) ◽  
pp. 220-231 ◽  
Author(s):  
Fariz Ali ◽  
◽  
Naoki Motoi ◽  
Kirill Van Heerden ◽  
Atsuo Kawamura

A bipedal robot should be robust and able to move in various directions on stairs. However, up to date many research studies have been focusing on walking in the up or down direction only. Therefore, a strategy to realize walking along a step is investigated. In conventional methods, CoM is moved up or down during walking in this situation. In this paper, a method named as Dual Length Linear Inverted Pendulum Method (DLLIPM) with Newton-Raphson is proposed for 3-D biped robot walking. The proposed method applies different length of pendulum at left and right legs in order to represent the CoM height. By using the proposed method, maximum impact forces are reduced. From the Ground Reaction Forces (GRF) data obtained in the simulations, the validity of the proposed method is confirmed.


2001 ◽  
Vol 17 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Jeremy J. Bauer ◽  
Robyn K. Fuchs ◽  
Gerald A. Smith ◽  
Christine M. Snow

Drop landings increase hip bone mass in children. However, force characteristics from these landings have not been studied. We evaluated ground and hip joint reaction forces, average loading rates, and changes across multiple trials from drop landings associated with osteogenesis in children. Thirteen prepubescent children who had previously participated in a bone loading program volunteered for testing. They performed 100 drop landings onto a force plate. Ground reaction forces (GRF) and two-dimensional kinematic data were recorded. Hip joint reaction forces were calculated using inverse dynamics. Maximum GRF were 8.5 ± 2.2 body weight (BW). At initial contact, GRF were 5.6 ± 1.4 BW while hip joint reactions were 4.7 ± 1.4 BW. Average loading rates for GRF were 472 ± 168 BW/s. Ground reaction forces did not change significantly across trials for the group. However, 5 individuals showed changes in max GRF across trials. Our data indicate that GRF are attenuated 19% to the hip at the first impact peak and 49% at the second impact peak. Given the skeletal response from the drop landing protocol and our analysis of the associated force magnitudes and average loading rates, we now have a data point on the response surface for future study of various combinations of force, rate, and number of load repetitions for increasing bone in children.


2022 ◽  
Vol 12 ◽  
Author(s):  
AmirAli Jafarnezhadgero ◽  
Nasrin Amirzadeh ◽  
Amir Fatollahi ◽  
Marefat Siahkouhian ◽  
Anderson S. Oliveira ◽  
...  

Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running.Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls.Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed.Results: Running on sand resulted in lower speed compared with stable ground running (p &lt; 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p &lt; 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand.Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 962
Author(s):  
Xi Wang ◽  
Liqin Deng ◽  
Wing-Kai Lam ◽  
Yang Yang ◽  
Xini Zhang ◽  
...  

Purpose: this study aimed to investigate the footwear cushioning effects on impact forces and joint kinematics of the lower extremity during bipedal drop landings before and after acute exercise-induced fatigue protocol. Methods: in this case, 15 male collegiate basketball athletes performed drop landings from a 60 cm platform wearing highly-cushioned shoes (HS) and less cushioned shoes (control shoes, CS) before and after acute fatigue-inducing exercises (i.e., shuttle run combined with multiple vertical jumps). Force plates and motion capturing systems were synchronised to measure ground reaction forces and kinematic data during drop landings. Maximum jump height was analysed with one-way ANOVA. Two-way repeated measure ANOVAs were performed on each of the tested variables to examine if there was significant main effects of shoe and fatigue as well as the interaction. The significance level was set to 0.05. Results: rearfoot peak impact forces and loading rates significantly reduced when the participants wore HS in pre- and post-fatigue conditions. The peak loading rates in forefoot significantly reduced when HS were worn in post-fatigue. Compared with pre-fatigue, wearing HS contributed to with 24% and 13% reduction in forefoot and rearfoot peak loading rates, respectively, and the occurrence times of first and second peak impact forces and loading rates were much later. In the post-fatigue, a significant increase in the initial contact and minimum angles of the ankle were observed in HS compared with CS. Conclusion: these findings suggest that footwear cushioning can reduce landing-related rearfoot impact forces regardless of fatigue conditions. In a situation where the neuromuscular activity is reduced or absent such as post-fatigue wearing better cushioning shoes show superior attenuation, as indicated by lower forefoot and rearfoot impacts.


2013 ◽  
Vol 29 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Shiu Hong Wong ◽  
Tianjian Ji ◽  
Youlian Hong ◽  
Siu Lun Fok ◽  
Lin Wang

The low impact forces of Tai Chi push-hand exercises may be particularly suited for older people and for those with arthritis; however, the biomechanics of push-hand exercises have not previously been reported. This paper examines the ground reaction forces (GRFs) and plantar force distributions during Tai Chi push-hand exercises in a stationary stance with and without an opponent. Ten male Tai Chi practitioners participated in the study. The GRFs of each foot were measured in three perpendicular directions using two force plates (Kistler). The plantar force distribution of each foot was measured concurrently using an insole sensor system (Novel). The results showed that the average maximum vertical GRF of each foot was not more than 88% ± 6.1% of the body weight and the sum of the vertical forces (103% ± 1.4%) generated by the two feet approximately equals the body weight at any one time. The horizontal GRFs generated by the two feet were in the opposite directions and the measured mean peak values were not more than 12% ± 2.8% and 17% ± 4.3% of the body weight in the medio-lateral and antero-posterior directions respectively. Among the nine plantar areas, the toes sustained the greatest plantar force. This study indicates that push-hand exercises generate lower vertical forces than those induced by walking, bouncing, jumping and Tai Chi gait, and that the greatest plantar force is located in the toe area, which may have an important application in balance training particularly for older adults.


Sign in / Sign up

Export Citation Format

Share Document