scholarly journals Challenges of Biomass Utilization for Bioenergy in a Climate Change Scenario

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1277
Author(s):  
Emanuelle Neiverth de Freitas ◽  
José Carlos Santos Salgado ◽  
Robson Carlos Alnoch ◽  
Alex Graça Contato ◽  
Eduardo Habermann ◽  
...  

The climate changes expected for the next decades will expose plants to increasing occurrences of combined abiotic stresses, including drought, higher temperatures, and elevated CO2 atmospheric concentrations. These abiotic stresses have significant consequences on photosynthesis and other plants’ physiological processes and can lead to tolerance mechanisms that impact metabolism dynamics and limit plant productivity. Furthermore, due to the high carbohydrate content on the cell wall, plants represent a an essential source of lignocellulosic biomass for biofuels production. Thus, it is necessary to estimate their potential as feedstock for renewable energy production in future climate conditions since the synthesis of cell wall components seems to be affected by abiotic stresses. This review provides a brief overview of plant responses and the tolerance mechanisms applied in climate change scenarios that could impact its use as lignocellulosic biomass for bioenergy purposes. Important steps of biofuel production, which might influence the effects of climate change, besides biomass pretreatments and enzymatic biochemical conversions, are also discussed. We believe that this study may improve our understanding of the plant biological adaptations to combined abiotic stress and assist in the decision-making for selecting key agronomic crops that can be efficiently adapted to climate changes and applied in bioenergy production.

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


2021 ◽  
Author(s):  
Christine Moos ◽  
Antoine Guisan ◽  
Christophe F. Randin ◽  
Heike Lischke

Abstract In steep terrain, forests play an important role as natural means of protection against natural hazards, such as rockfall. Due to climate warming, significant changes in the protection service of these forests have to be expected in future. Shifts of current to more drought adapted species may result in temporary or even irreversible losses in the risk reduction provided by these forests. In this study, we assessed how the protective effect against rockfall of a protection forest in the western part of the Valais in the Swiss Alps may change in future, by combining dynamic forest modelling with a quantitative risk analysis. Current and future forest development was modelled with the spatially explicit forest model TreeMig for a moderate (RCP4.5) and an extreme (RCP8.5) climate change scenario. The simulated forest scenarios were compared to ground-truth data from the current forest complex. We quantified the protective effect of the different forest scenarios based on the reduction of rockfall risk for people and infrastructure at the bottom of the slope. Rockfall risk was calculated on the basis of three-dimensional rockfall simulations. The forest simulations predicted a clear decrease in basal area of most of the currently present species in future. The forest turned into a Q. pubescens dominated forest, for both climate scenarios, and mixed with P. sylvestris in RCP4.5. F. sylvatica completely disappeared in RCP8.5. With climate warming, a clear increase in risk is expected for both climate change scenarios. In the long-term (> 100 years), a stabilization of risk, or even a slight decline may be expected due to an increase in biomass of the trees. The results of this study further indicate that regular forest interventions may promote regeneration and thus accelerate the shift in species distribution. Future research should address the long-term effect of different forest management strategies on the protection service of forests under climate change.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1380 ◽  
Author(s):  
Maria Gabriella Gaeta ◽  
Davide Bonaldo ◽  
Achilleas G. Samaras ◽  
Sandro Carniel ◽  
Renata Archetti

This work presents the results of the numerical study implemented for the natural area of Lido di Spina, a touristic site along the Italian coast of the North Adriatic Sea, close to the mouth of River Reno. High-resolution simulations of nearshore dynamics are carried out under climate change conditions estimated for the site. The adopted modeling chain is based on the implementation of multiple-nested, open-source numerical models. More specifically, the coupled wave-2D hydrodynamics runs, using the open-source TELEMAC suite, are forced at the offshore boundary by waves resulting from the wave model (SWAN) simulations for the Adriatic Sea, and sea levels computed following a joint probability analysis approach. The system simulates present-day scenarios, as well as conditions reflecting the high IPCC greenhouse concentration trajectory named RCP8.5 under predicted climate changes. Selection of sea storms directed from SE (Sirocco events) and E–NE (Bora events) is performed together with Gumbel analysis, in order to define ordinary and extreme sea conditions. The numerical results are here presented in terms of local parameters such as wave breaking position, alongshore currents intensity and direction and flooded area, aiming to provide insights on how climate changes may impact hydrodynamics at a site scale. Although the wave energy intensity predicted for Sirocco events is expected to increase only slightly, modifications of the wave dynamics, current patterns, and inland flooding induced by climate changes are expected to be significant for extreme conditions, especially during Sirocco winds, with an increase in the maximum alongshore currents and in the inundated area compared to past conditions.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1556 ◽  
Author(s):  
Daeeop Lee ◽  
Giha Lee ◽  
Seongwon Kim ◽  
Sungho Jung

In establishing adequate climate change policies regarding water resource development and management, the most essential step is performing a rainfall-runoff analysis. To this end, although several physical models have been developed and tested in many studies, they require a complex grid-based parameterization that uses climate, topography, land-use, and geology data to simulate spatiotemporal runoff. Furthermore, physical rainfall-runoff models also suffer from uncertainty originating from insufficient data quality and quantity, unreliable parameters, and imperfect model structures. As an alternative, this study proposes a rainfall-runoff analysis system for the Kratie station on the Mekong River mainstream using the long short-term memory (LSTM) model, a data-based black-box method. Future runoff variations were simulated by applying a climate change scenario. To assess the applicability of the LSTM model, its result was compared with a runoff analysis using the Soil and Water Assessment Tool (SWAT) model. The following steps (dataset periods in parentheses) were carried out within the SWAT approach: parameter correction (2000–2005), verification (2006–2007), and prediction (2008–2100), while the LSTM model went through the process of training (1980–2005), verification (2006–2007), and prediction (2008–2100). Globally available data were fed into the algorithms, with the exception of the observed discharge and temperature data, which could not be acquired. The bias-corrected Representative Concentration Pathways (RCPs) 4.5 and 8.5 climate change scenarios were used to predict future runoff. When the reproducibility at the Kratie station for the verification period of the two models (2006–2007) was evaluated, the SWAT model showed a Nash–Sutcliffe efficiency (NSE) value of 0.84, while the LSTM model showed a higher accuracy, NSE = 0.99. The trend analysis result of the runoff prediction for the Kratie station over the 2008–2100 period did not show a statistically significant trend for neither scenario nor model. However, both models found that the annual mean flow rate in the RCP 8.5 scenario showed greater variability than in the RCP 4.5 scenario. These findings confirm that the LSTM runoff prediction presents a higher reproducibility than that of the SWAT model in simulating runoff variation according to time-series changes. Therefore, the LSTM model, which derives relatively accurate results with a small amount of data, is an effective approach to large-scale hydrologic modeling when only runoff time-series are available.


2011 ◽  
Vol 62 (9) ◽  
pp. 1043 ◽  
Author(s):  
Nick Bond ◽  
Jim Thomson ◽  
Paul Reich ◽  
Janet Stein

There are few quantitative predictions for the impacts of climate change on freshwater fish in Australia. We developed species distribution models (SDMs) linking historical fish distributions for 43 species from Victorian streams to a suite of hydro-climatic and catchment predictors, and applied these models to explore predicted range shifts under future climate-change scenarios. Here, we present summary results for the 43 species, together with a more detailed analysis for a subset of species with distinct distributions in relation to temperature and hydrology. Range shifts increased from the lower to upper climate-change scenarios, with most species predicted to undergo some degree of range shift. Changes in total occupancy ranged from –38% to +63% under the lower climate-change scenario to –47% to +182% under the upper climate-change scenario. We do, however, caution that range expansions are more putative than range contractions, because the effects of barriers, limited dispersal and potential life-history factors are likely to exclude some areas from being colonised. As well as potentially informing more mechanistic modelling approaches, quantitative predictions such as these should be seen as representing hypotheses to be tested and discussed, and should be valuable for informing long-term strategies to protect aquatic biota.


2016 ◽  
Vol 14 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Abdullah Alzahrani ◽  
Halim Boussabaine ◽  
Ali Nasser Alzaed

Purpose – The purpose of this paper is to report results from a survey on emerging climate changes and the risks to the operation of building assets in the UK. The property sector is facing major challenges as a result of projected climate change scenarios. Predictions concerning future climate change and the subsequent impact on building operations are still subject to a high degree of uncertainty. However, it is important that building stockholders consider a range of possible future risks that may influence the operation of their assets. Design/methodology/approach – The literature review and questionnaire are used to elicit and assess the likelihood of occurrence of climate change risks impacting building operations. The survey was carried out among building stockowners and professionals in the UK. Statistical methods were used to rank and compare the findings. Findings – The majority of the respondents strongly agreed that the list of risks that were elicited from the literature will have an impact on their building assets within a 0-5 years’ time horizon. It was found that the professionals were most concerned about higher energy prices and an increase in operation costs in general; they were least concerned about an electricity blackout. Research limitations/implications – This paper is limited to the UK, and regional variations are not explored. Nevertheless, the buildings’ operation risk study provides a starting point for further investigations into the emerging risks from climate change, and their impact on the operation of building stock. Future work could investigate direct mapping between climate risks and the financial value of properties. Originality/value – Findings of this paper can help professionals and building stockowners improve their understanding of climate change risks and the impact on their assets. This paper could also help these individuals to formulate appropriate adaptation and mitigation strategies.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Renato de Oliveira Fernandes ◽  
Cleiton da Silva Silveira ◽  
Ticiana Marinho de Carvalho Studart ◽  
Francisco de Assis de Souza Filho

ABSTRACT Climate changes can have different impacts on water resources. Strategies to adapt to climate changes depend on impact studies. In this context, this study aimed to estimate the impact that changes in precipitation, projected by Global Circulation Models (GCMs) in the fifth report by the Intergovernmental Panel on Climate Change (IPCC-AR5) may cause on reservoir yield (Q90) of large reservoirs (Castanhão and Banabuiú), located in the Jaguaribe River Basin, Ceará. The rainfall data are from 20 GCMs using two greenhouse gas scenarios (RCP4.5 and RCP8.5). The precipitation projections were used as input data for the rainfall-runoff model (SMAP) and, after the reservoirs’ inflow generation, the reservoir yields were simulated in the AcquaNet model, for the time periods of 2040-2069 and 2070-2099. The results were analyzed and presented a great divergence, in sign (increase or decrease) and in the magnitude of change of Q90. However, most Q90 projections indicated reduction in both reservoirs, for the two periods, especially at the end of the 21th century.


2017 ◽  
Vol 19 (3) ◽  
pp. 163 ◽  
Author(s):  
Adjie Pamungkas ◽  
Sarah Bekessy ◽  
Ruth Lane

Reducing community vulnerability to flooding is increasingly important given predicted intensive flood events in many parts of the world. We built a community vulnerability model to explore the effectiveness of a range of proactive and reactive adaptations to reduce community vulnerability to flood. The model consists of floods, victims, housings, responses, savings, expenditure and income sub models. We explore the robustness of adaptations under current conditions and under a range of future climate change scenarios. We present results of this model for a case study of Centini Village in Lamongan Municipality, Indonesia, which is highly vulnerable to the impacts of annual small-scale and infrequent extreme floods.  We compare 11 proactive adaptations using indicators of victims, damage/losses and recovery process to reflect the level of vulnerability. We find that reforestation and flood infrastructure redevelopment are the most effective proactive adaptations for minimising vulnerability to flood under current condition. Under climate change scenario, the floods are predicted to increase 17% on the average and 5% on the maximum measurements. The increasing floods result reforestation is the only effective adaptations in the future under climate change scenario.


Author(s):  
John Saviour Yaw Eleblu ◽  
Eugene Tenkorang Darko ◽  
Eric Yirenkyi Danquah

AbstractClimate smart agriculture (CSA) embodies a blend of innovations, practices, systems, and investment programmes that are used to mitigate against the adverse effects of climate change and variability on agriculture for sustained food production. Food crop production under various climate change scenarios requires the use of improved technologies that are called climate smart agriculture to ensure increased productivity under adverse conditions of increased global temperatures, frequent and more intense storms, floods and drought stresses. This chapter summarizes available information on climate change and climate smart agriculture technologies. It is important to evaluate each climate change scenario and provide technologies that farmers, research scientists, and policy drivers can use to create the desired climate smart agriculture given the array of tools and resources available.


2013 ◽  
Vol 5 (6) ◽  
pp. 1426
Author(s):  
João Nildo S. Vianna ◽  
Marcelo Castro Pereira ◽  
Laura M.G. Duarte ◽  
Magda E. Wehrmann

Este trabalho tem por objetivo avaliar, ainda que de forma preliminar, os efeitos limitantes das mudanças climáticas na produção de oleaginosas agro-energética no semiárido brasileiro, nomeadamente a redução dos índices pluviométricos e aumento de temperatura. Para alcançar este objetivo usa-se como referência a evolução de variáveis climáticas, por meio da série histórica entre 1973 e 2010, e projeções futuras tendo por base os cenários de mudanças climáticas, desenvolvidos para o nordeste brasileiro até 2100. O recorte geográfico é a região de Irecê, no semiárido da Bahia, tradicional reduto da agricultura familiar e grande produtor de alimentos consorciado com oleaginosas. O estudo mostra que as culturas tradicionais de oleaginosas estão próximas aos limites de exigências hídricas, pelo que, para enfrentar as mudanças nos padrões climáticos, vai ser necessário um melhoramento genético das culturas tradicionais para que essa espécies consigam tolerar as restrições hídricas. Preconizando-se igualmente a introdução de espécies mais rústicas e com maior resistência ao estresse hídrico. Palavras-Chave: Agricultura Familiar, Vulnerabilidade e Adaptação às Mudanças Climáticas, Biodiesel, Semiárido.  The Role of Oilseeds in a Climate Change Scenario in the Brazilian Semiarid  ABSTRACT The present study aims to evaluate the effects of climate changes on the production of oilseed and energy crops in the Brazilian semiarid region. The study is based on the analysis of past climate, by evaluating a historic series of rain and temperature from 1973 to 2010. This historic series is, then, compared to a future climate prediction, based on climatic change scenarios developed for the Brazilian northeast until 2100. The geographic location of the study is the Irecê area of the State of Bahia, in the semi-arid northeast. That is a traditional family agriculture area with a strong food crop and oilseeds production. The study shows that traditional oilseed crops are being cultivated near the limits of their water needs. In order to face the climate changes, such crops would need to be genetically improved to increase their tolerance to water stress. An option would be to introduce species with higher level of tolerance to water stress. Keywords: family agriculture, vulnerability and adaptation to climate changes, biodiesel, semiarid.


Sign in / Sign up

Export Citation Format

Share Document