scholarly journals Harnessing Synergistic Biostimulatory Processes: A Plausible Approach for Enhanced Crop Growth and Resilience in Organic Farming

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
Md. Nasir Hossain Sani ◽  
Jean W. H. Yong

Demand for organically grown food crops is rising substantially annually owing to their contributions to human health. However, organic farm production is still generally lower compared to conventional farming. Nutrient availability, content consistency, uptake, assimilation, and crop responses to various stresses were reported as critical yield-limiting factors in many organic farming systems. In recent years, plant biostimulants (BSs) have gained much interest from researchers and growers, and with the objective of integrating these products to enhance nutrient use efficiency (NUE), crop performance, and delivering better stress resilience in organic-related farming. This review gave an overview of direct and indirect mechanisms of microbial and non-microbial BSs in enhancing plant nutrient uptake, physiological status, productivity, resilience to various stressors, and soil-microbe-plant interactions. BSs offer a promising, innovative and sustainable strategy to supplement and replace agrochemicals in the near future. With greater mechanistic clarity, designing purposeful combinations of microbial and non-microbial BSs that would interact synergistically and deliver desired outcomes in terms of acceptable yield and high-quality products sustainably will be pivotal. Understanding these mechanisms will improve the next generation of novel and well-characterized BSs, combining microbial and non-microbial BSs strategically with specific desired synergistic bio-stimulatory action, to deliver enhanced plant growth, yield, quality, and resilience consistently in organic-related cultivation.

2021 ◽  
Vol 6 (3) ◽  
pp. 258-265
Author(s):  
Dulbari Dulbari ◽  
Yuriansyah Yuriansyah ◽  
Hery Sutrisno ◽  
Arief Maksum ◽  
Destieka Ahyuni ◽  
...  

Organic agriculture was a cultivation system that applies the concept of sustainable agriculture. Organic farming systems depend on natural ingredients without using synthetic chemicals. Organic cultivation was environmentally friendly by farming activities by continuing to minimize negative impacts on the surrounding environment. This activity aims to provide knowledge and skills on the concept of sustainable agriculture, which is carried out through the application of an organic farming system at Polinela Organic Farm. Technical guidance activities are carried out at the Polinela Organic Farm, Lampung State Polytechnic, on Tuesday, March 10, 2020. Participants were the Association of ‘Sejahtera Mandiri’ Farmers Groups Rejo Asri Village, Seputuh Raman, Central Lampung. The application of environmental friendly in agricultural aspects was reflected in the management of the concept of organic agriculture carried out by Polinela Organic Farm. The concept of environmental friendly in agricultural development was implemented by taking into various aspects, such as the use of inorganic fertilizers with high efficiency, the application of pest and disease control by notice the natural ecological balance, the application of integrated crop management, the application of a clean and healthy farming system, the maintenance and strengthening of physical fertility, chemical, and biological in nature and the use of effective technology based on local wisdom.


2018 ◽  
Vol 2 (95) ◽  
pp. 78-81
Author(s):  
L.I. Shkarivska

The changes of the soil’s humus soil within the rural areas are investigated for the organic farming system. The most significant impact of organic agriculture on humus content over 55% was observed on soddy podzolic soils (V>75%), the lowest –7,5% on typical chernozem (V≈16%). Changes in the qualitative composition of humus for the introduction of various types of organic substrates are analyzed.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


2011 ◽  
Vol 14 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hiroshi Uchino ◽  
Kazuto Iwama ◽  
Yutaka Jitsuyama ◽  
Keiko Ichiyama ◽  
Eri Sugiura ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1932
Author(s):  
Nesrein M. Hashem ◽  
Antonio Gonzalez-Bulnes

Reproductive efficiency of farm animals has central consequences on productivity and profitability of livestock farming systems. Optimal reproductive management is based on applying different strategies, including biological, hormonal, nutritional strategies, as well as reproductive disease control. These strategies should not only guarantee sufficient reproductive outcomes but should also comply with practical and ethical aspects. For example, the efficiency of the biological- and hormonal-based reproductive strategies is mainly related to several biological factors and physiological status of animals, and of nutritional strategies, additional factors, such as digestion and absorption, can contribute. In addition, the management of reproductive-related diseases is challenged by the concerns regarding the intensive use of antibiotics and the development of antimicrobial resistant strains. The emergence of nanotechnology applications in livestock farming systems may present innovative and new solutions for overcoming reproductive management challenges. Many drugs (hormones and antibiotics), biological molecules, and nutrients can acquire novel physicochemical properties using nanotechnology; the main ones are improved bioavailability, higher cellular uptake, controlled sustained release, and lower toxicity compared with ordinary forms. In this review, we illustrate advances in the most common reproductive management strategies by applying nanotechnology, considering the current challenges of each strategy.


2006 ◽  
Vol 18 ◽  
pp. 301-308 ◽  
Author(s):  
E.A. Stockdale ◽  
M.A. Shepherd ◽  
S. Fortune ◽  
S.P. Cuttle

2015 ◽  
Vol 4 (3) ◽  
pp. 51 ◽  
Author(s):  
Joseph R. Heckman

<p>Environmental concerns associated with annual row crop grain production – including soil erosion, soil carbon loss, intensive use of chemicals and petroleum, limited arable land, among others – could be addressed by converting conventional livestock production to an organic pasture based system. The inclusion of tree crops would further enhance the opportunity for feeding pasture- raised livestock by providing shelter and alternative feed sources. Biodiversity is an essential aspect of an organic farm plan. The idea of including tree crops and other perennials into the vision of an organic farm as a “living system” is very much compatible with the goals and philosophy of organic farming. Before modern no-till farming systems were developed, tree crops and pasture systems were found to provide similar benefits for controlling soil erosion and conserving soil carbon. For example, J. Russell Smith’s <em>Tree Crops: A Permanent Agriculture</em> (Smith, 1950) and pioneered tree crop agriculture as the alternative to annual row crops for protecting soils from erosion while producing livestock feed such as acorns, nuts, and fodder. A survey of Mid-Atlantic USA soils under pasture found 60% higher soil organic matter content than cultivated fields. Because United States Department of Agriculture’s National Organic Program (USDA-NOP) standards require dairy cattle consume pasture forage and limited grain (7 C.F.R. pt. 206), organic milk contains higher concentrations of omega-3 and fewer omega-6 fatty acids than conventional milk. Organic standards also state “the producer must not use lumber treated with arsenate or other prohibited materials for new [fence posts] installations or replacement purposes in contact with soil or livestock.” Black locust (<em>Robinia pseudoacacia</em>) is a fast growing renewable alternative to treated lumber with many attributes compatible with organic farming. This versatile tree fixes nitrogen (N), provides flowers for honey bees and other pollinators, and produces a highly durable dense wood ideal for fence posts useable for up to 50 year.</p>


2021 ◽  
pp. 116827
Author(s):  
Violette Geissen ◽  
Vera Silva ◽  
Esperanza Huerta Lwanga ◽  
Nicolas Beriot ◽  
Klaas Oostindie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document