scholarly journals Inhibition on JNK Mimics Silencing of Wnt-11 Mediated Cellular Response in Androgen-Independent Prostate Cancer Cells

Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 142
Author(s):  
Elif Damla Arisan ◽  
Ozge Rencuzogullari ◽  
Buse Keskin ◽  
Guy H. Grant ◽  
Pinar Uysal-Onganer

Prostate cancer (PCa) is one of the most common cancers among men, and one of the leading causes of cancer death for men. The c-Jun N-terminal kinase (JNK) pathway is required for several cellular functions, such as survival, proliferation, differentiation, and migration. Wnt-11, a member of the Wnt family, has been identified for its upregulation in PCa; however, downstream signalling of Wnt-11 remains to be fully characterized. In this study, we investigated the role of the JNK pathway as a potential downstream factor for Wnt-11 signalling. For this purpose, LNCaP, DU145, and PC-3 PCa cells and normal epithelial PNT1A cells were treated with a specific JNK kinase inhibitor: JNKVIII. Our results showed that JNK inhibition decreased mitochondrial membrane potential and promoted cell death in a cell type-dependent manner. We found that JNK inhibition led to an increase in autophagy and prevented epithelial–mesenchymal transition (EMT) in independently growing androgen cells. JNK inhibition and the silencing of Wnt-11 showed similar responses in DU145 and PC-3 cells and decreased metastasis-related biomarkers, cell migration, and invasion. Overall, our results suggest that JNK signalling plays a significant role in the pathophysiology of PCa by mediating Wnt-11 induced signals. Our data highlights that both the JNK pathway and Wnt-11 could be a useful therapeutic target for the combinatory application of current PCa.

2018 ◽  
Vol 26 (7) ◽  
pp. 928-938 ◽  
Author(s):  
Huisheng Ge ◽  
Nanlin Yin ◽  
Ting-Li Han ◽  
Dongni Huang ◽  
Xuehai Chen ◽  
...  

Preeclampsia (PE) is a pregnancy-specific disorder representing a major cause of maternal and perinatal morbidity and mortality. Invasive and migratory phenotypes are acquired by trophoblasts through the process of epithelial–mesenchymal transition (EMT). Studies have shown that trophoblast EMT events are dysregulated in PE and play an important role in its development. Dysregulation of interleukin (IL)-27 and IL-27R (T-cell cytokine receptor (TCCR)/WSX -1) is relevant to PE. In this study, our results demonstrated that IL-27 did not significantly affect the proliferation and apoptosis of HTR -8/SVneo trophoblast cells, while it did significantly inhibit trophoblast invasion and migration. The expression of EMT-related proteins in HTR-8/SVneo cells and extravillous explants was detected after treatment with IL-27. Expression of epithelial markers was increased, and mesenchymal marker expression was reduced. Furthermore, we found that IL-27 could induce significant phosphorylation of Signal Transducer and Activator of Transcription 1 (STAT1) and Signal Transducer and Activator of Transcription 3 (STAT3) in a time-dependent manner in HTR-8/SVneo cells. Selective inhibitors of STAT1 (STAT1 siRNA) and STAT3 (STAT3 siRNA) were used to determine whether both STAT1 and STAT3 are required for IL-27-mediated inhibition of EMT. STAT1 inhibition in IL-27-treated cells attenuated the IL-27 effect, while the inhibition of STAT3 activation had no effect on the development of the epithelial phenotype. These results demonstrate that IL-27 may inhibit trophoblast cell migration and invasion by affecting the EMT process through an STAT1-dominant pathway in PE.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Kai Zhang ◽  
Tao Peng ◽  
Qingying Yan ◽  
Leitao Sun ◽  
Haojun Miao ◽  
...  

Jiedu Sangen Decoction (JSD), a traditional Chinese medicine (TCM) formula, has been widely used in China to treat gastrointestinal cancer, especially as an adjuvant therapy in colorectal cancer (CRC) patients. This study aimed to evaluate the efficacy of JSD and Jiedu Sangen aqueous extract (JSAE) in colon cancer cells and explored the underlining mechanisms by cytotoxicity assay, scratch assay, transwell migration assay, matrigel invasion assay, confocal laser scanning microscopy, and western blot analysis. We demonstrated that JSAE inhibited the growth of colon cancer SW480 cells in a dose-dependent manner and JSAE repressed cancer cell migration and invasion. Furthermore, epithelial mesenchymal transition (EMT) was reversed by JSAE via enhancing E-cadherin expression and attenuating protein levels of EMT promoting factors such as N-cadherin, Slug, and ZEB1. These findings provided the first experimental evidence confirming the efficacy of JSAE in repressing invasion and metastasis of CRC and paving a way for the broader use of JSD in clinic.


Reproduction ◽  
2014 ◽  
Vol 147 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Chi-Jr Liao ◽  
Pei-Tzu Li ◽  
Ying-Chu Lee ◽  
Sheng-Hsiang Li ◽  
Sin Tak Chu

Lipocalin 2 (LCN2) is an induced stressor that promotes the epithelial–mesenchymal transition (EMT). We previously demonstrated that the development of endometriosis in mice correlates with the secretion of LCN2 in the uterus. Here, we sought to clarify the relationship between LCN2 and EMT in endometrial epithelial cells and to determine whether LCN2 plays a role in endometriosis. Antibodies that functionally inhibit LCN2 slowed the growth of ectopic endometrial tissue in a mouse model of endometriosis, suggesting that LCN2 promotes the formation of endometriotic lesions. Using nutrient deprivation as a stressor, LCN2 expression was induced in cultured primary endometrial epithelial cells. As LCN2 levels increased, the cells transitioned from a round to a spindle-like morphology and dispersed. Immunochemical analyses revealed decreased levels of cytokeratin and increased levels of fibronectin in these endometrial cells, adhesive changes that correlate with induction of cell migration and invasion.Lcn2knockdown also indicated that LCN2 promotes EMT and migration of endometrial epithelial cells. Our results suggest that stressful cellular microenvironments cause uterine tissues to secrete LCN2 and that this results in EMT of endometrial epithelial cells, which may correlate with the development of ectopic endometriosis. These findings shed light on the role of LCN2 in the pathology of endometrial disorders.


2020 ◽  
Vol 21 (5) ◽  
pp. 1827 ◽  
Author(s):  
Yahima Frión-Herrera ◽  
Daniela Gabbia ◽  
Michela Scaffidi ◽  
Letizia Zagni ◽  
Osmany Cuesta-Rubio ◽  
...  

The majority of deaths related to colorectal cancer (CRC) are associated with the metastatic process. Alternative therapeutic strategies, such as traditional folk remedies, deserve attention for their potential ability to attenuate the invasiveness of CRC cells. The aim of this study is to investigate the biological activity of brown Cuban propolis (CP) and its main component nemorosone (NEM) and to describe the molecular mechanism(s) by which they inhibit proliferation and metastatic potential of 2 CRC cell lines, i.e., HT-29 and LoVo. Our results show that CP and NEM significantly decreased cell viability and inhibited clonogenic capacity of CRC cells in a dose and time-dependent manner, by arresting the cell cycle in the G0/G1 phase and inducing apoptosis. Furthermore, CP and NEM downregulated BCL2 gene expression and upregulated the expression of the proapoptotic genes TP53 and BAX, with a consequent activation of caspase 3/7. They also attenuated cell migration and invasion by inhibiting MMP9 activity, increasing E-cadherin and decreasing β-catenin and vimentin expression, proteins involved in the epithelial–mesenchymal transition (EMT). In conclusion NEM, besides displaying antiproliferative activity on CRC cells, is able to decrease their metastatic potential by modulating EMT-related molecules. These finding provide new insight about the mechanism(s) of the antitumoral properties of CP, due to NEM content.


Author(s):  
Sungyeon Park ◽  
Minsoo Kang ◽  
Suhyun Kim ◽  
Hyoung-Tae An ◽  
Jan Gettemans ◽  
...  

The first-line treatment for prostate cancer (PCa) is androgen ablation therapy. However, prostate tumors generally recur and progress to androgen-independent PCa (AIPC) within 2–3 years. α-Actinin-4 (ACTN4) is an actin-binding protein that belongs to the spectrin gene superfamily and acts as an oncogene in various cancer types. Although ACTN4 is involved in tumorigenesis and the epithelial–mesenchymal transition of cervical cancer, the role of ACTN4 in PCa remains unknown. We found that the ACTN4 expression level increased during the transition from androgen-dependent PCa to AIPC. ACTN4 overexpression resulted in enhanced proliferation and motility of PCa cells. Increased β-catenin due to ACTN4 promoted the transcription of genes involved in proliferation and metastasis such as CCND1 and ZEB1. ACTN4-overexpressing androgen-sensitive PCa cells were able to grow in charcoal-stripped media. In contrast, ACTN4 knockdown using si-ACTN4 and ACTN4 nanobody suppressed the proliferation, migration, and invasion of AIPC cells. Results of the xenograft experiment revealed that the mice injected with LNCaPACTN4 cells exhibited an increase in tumor mass compared with those injected with LNCaPMock cells. These results indicate that ACTN4 is involved in AIPC transition and promotes the progression of PCa.


Pharmacology ◽  
2019 ◽  
Vol 104 (5-6) ◽  
pp. 312-319 ◽  
Author(s):  
Can Wei ◽  
Junfeng Jing ◽  
Yanbin Zhang ◽  
Ling Fang

Background: Wogonoside, an effective component of Scutellaria baicalensis extract, has recently become a hot topic for its newly discovered anticancer efficacy, but the underlying pharmacological mechanism is still unclear. In this study, we tested the inhibitory effects of wogonoside in human prostate cancer PC3 cells in vitro and vivo. Methods: The effects of wogonoside on cell viability, cycle progression, invasion, migration, and apoptosis were assessed in vitro. The levels of proteins in related signaling pathways were detected by western blotting assay. Finally, nude mouse tumorigenicity assay was conducted to detect the anticancer effect of wogonoside in vivo. Results: Wogonoside inhibited cell viability, invasive and migratory ability in a time- and dose-dependent manner. Flow cytometry indicated that wogonoside could induce cell apoptosis and S phase cell-cycle arrest. Mechanically, wogonoside suppressed the Wnt/β-catenin signaling pathway, and the level of p-glycogen synthase kinase-3β (GSK-3β; Ser9) was inhibited by wogonoside. The epithelial-mesenchymal transition (EMT) process was also reversed in PC3 cell line after wogonoside treatment. In vivo experiments showed that wogonoside inhibited tumor growth in xenograft mouse models. Conclusion: These findings revealed that wogonoside could suppress Wnt/β-catenin pathway and reversing the EMT process in PC3 cells. GSK-3β acts as a tumor suppressor in prostate cancer. Wogonoside may serve as an effective agent for treating prostate cancer.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2454
Author(s):  
Cheng-Chan Yu ◽  
Sung-Ying Huang ◽  
Shu-Fang Chang ◽  
Kuan-Fu Liao ◽  
Sheng-Chun Chiu

Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. Regorafenib is a multi-kinase inhibitor and the second-line treatment for HCC. Since the PI3K/Akt/mTOR signaling pathway is dysregulated in HCC, we evaluated the therapeutic effects of regorafenib combined with a dual PI3K/mTOR inhibitor BEZ235 in the human HCC cell lines (n = 3). The combined treatment with BEZ235 and regorafenib enhanced the inhibition of cell proliferation and increased the expression of cleaved caspase-3 and cleaved PARP in HCC cells. Moreover, the combined treatment suppressed HCC cell migration and invasion in the transwell assay. Further, the Western blot analyses confirmed the involvement of epithelial-mesenchymal transition (EMT)-related genes such as slug, vimentin, and matrix metalloproteinase (MMP)-9/-2. Additionally, the proteinase activity of MMP-9/-2 was analyzed using gelatin zymography. Furthermore, the inhibition of phosphorylation of the Akt, mTOR, p70S6K, and 4EBP1 after combined treatment was validated using Western blot analysis. Therefore, these results suggest that the combined treatment with BEZ235 and regorafenib benefits patients with HCC.


2020 ◽  
Vol 19 ◽  
pp. 153473542097248
Author(s):  
Feiyu Shan ◽  
Leitao Sun ◽  
Leyin Zhang ◽  
Kaibo Guo ◽  
Qingying Yan ◽  
...  

Background: Jiedu Sangen Decoction (JSD), a traditional Chinese medicine formula, has been widely applied in the treatment of gastrointestinal cancer, especially in colorectal cancer. Our study mainly aimed to assess the combined efficacy of Jiedu Sangen aqueous extract (JSAE) and a PD-L1 inhibitor (PI) in colon cancer cells migration and invasion, along with epithelial-mesenchymal transition, and then provide deep insights into the potential mechanism. Methods: We explored the inhibitory effects on invasion and metastasis and the reverse effect on EMT process in CT-26 colon cancer cell via Transwell migration assay, Matrigel invasion assay and confocal laser scanning microscopy. Furthermore, regulation in expression of EMT-related proteins and molecular biomarkers and underlying signal pathway proteins were detected through Western blotting and IHC. Results: The combination of JSD and PD-L1 inhibitor could inhibit migration, invasive ability and EMT of CT-26 cells in a concentration-dependent manner. Meanwhile, JSD combined with PD-L1 inhibitor could also remarkably reverse EMT and metastasis in vivo. In addition, the protein expression of N-cadherin, Slug, Snail, Vimentin was down-regulated along with E-cadherin s up-regulation with the combination of JSD and PD-L1 inhibitor, while that of PI3K/AKT was notably down-regulated. Conclusions: These findings indicated that JSAE and a PD-L1 inhibitor could drastically inhibit the migration and invasion of colorectal cancer by reversing EMT through the PI3K/AKT signaling pathway.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Aling Shen ◽  
Hongwei Chen ◽  
Youqin Chen ◽  
Jiumao Lin ◽  
Wei Lin ◽  
...  

The traditional Chinese medicine formula Pien Tze Huang (PZH) has long been used as a folk remedy for cancer. To elucidate the mode of action of PZH against cancer, in the present study we used a 5-FU resistant human colorectal carcinoma cell line (HCT-8/5-FU) to evaluate the effects of PZH on multidrug resistance (MDR) and epithelial-mesenchymal transition (EMT) as well as the activation of TGF-βpathway. We found that PZH dose-dependently inhibited the viability of HCT-8/5-FU cells which were insensitive to treatment of 5-FU and ADM, demonstrating the ability of PZH to overcome chemoresistance. Furthermore, PZH increased the intercellular accumulation of Rhodamine-123 and downregulated the expression of ABCG2 in HCT-8/5-FU cells. In addition, drug resistance induced the process of EMT in HCT-8 cells as evidenced by EMT-related morphological changes and alteration in the expression of EMT-regulatory factors, which however was neutralized by PZH treatment. Moreover, PZH inhibited MDR/EMT-enhanced migration and invasion capabilities of HCT-8 cells in a dose-dependent manner and suppressed MDR-induced activation of TGF-βsignaling in HCT-8/5-FU cells. Taken together, our study suggests that PZH can effectively overcome MDR and inhibit EMT in human colorectal carcinoma cells via suppression of the TGF-βpathway.


Sign in / Sign up

Export Citation Format

Share Document