scholarly journals The Molecular Mechanisms Associated with Aerobic Exercise-Induced Cardiac Regeneration

Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Bing Bo ◽  
Yang Zhou ◽  
Qingyun Zheng ◽  
Guandong Wang ◽  
Ke Zhou ◽  
...  

The leading cause of heart failure is cardiomyopathy and damage to the cardiomyocytes. Adult mammalian cardiomyocytes have the ability to regenerate, but this cannot wholly compensate for myocardial cell loss after myocardial injury. Studies have shown that exercise has a regulatory role in the activation and promotion of regeneration of healthy and injured adult cardiomyocytes. However, current research on the effects of aerobic exercise in myocardial regeneration is not comprehensive. This review discusses the relationships between aerobic exercise and the regeneration of cardiomyocytes with respect to complex molecular and cellular mechanisms, paracrine factors, transcriptional factors, signaling pathways, and microRNAs that induce cardiac regeneration. The topics discussed herein provide a knowledge base for physical activity-induced cardiomyocyte regeneration, in which exercise enhances overall heart function and improves the efficacy of cardiac rehabilitation.

2015 ◽  
Vol 309 (8) ◽  
pp. H1237-H1250 ◽  
Author(s):  
Marina Leone ◽  
Ajit Magadum ◽  
Felix B. Engel

The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major goal in experimental medicine is to elucidate the molecular mechanisms underlying the regenerative capacity of these species. A wide variety of experiments have demonstrated that naturally occurring heart regeneration relies on cardiomyocyte proliferation. Thus, major efforts have been invested to induce proliferation of mammalian cardiomyocytes in order to improve cardiac function after injury or to protect the heart from further functional deterioration. In this review, we describe and analyze methods currently used to evaluate cardiomyocyte proliferation. In addition, we summarize the literature on naturally occurring heart regeneration. Our analysis highlights that newt and zebrafish heart regeneration relies on factors that are also utilized in cardiomyocyte proliferation during mammalian fetal development. Most of these factors have, however, failed to induce adult mammalian cardiomyocyte proliferation. Finally, our analysis of mammalian neonatal heart regeneration indicates experiments that could resolve conflicting results in the literature, such as binucleation assays and clonal analysis. Collectively, cardiac regeneration based on cardiomyocyte proliferation is a promising approach for improving adult human cardiac function after injury, but it is important to elucidate the mechanisms arresting mammalian cardiomyocyte proliferation after birth and to utilize better assays to determine formation of new muscle mass.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1128 ◽  
Author(s):  
Dominik Schüttler ◽  
Sebastian Clauss ◽  
Ludwig T. Weckbach ◽  
Stefan Brunner

Regular physical activity with aerobic and muscle-strengthening training protects against the occurrence and progression of cardiovascular disease and can improve cardiac function in heart failure patients. In the past decade significant advances have been made in identifying mechanisms of cardiomyocyte re-programming and renewal including an enhanced exercise-induced proliferational capacity of cardiomyocytes and its progenitor cells. Various intracellular mechanisms mediating these positive effects on cardiac function have been found in animal models of exercise and will be highlighted in this review. 1) activation of extracellular and intracellular signaling pathways including phosphatidylinositol 3 phosphate kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), EGFR/JNK/SP-1, nitric oxide (NO)-signaling, and extracellular vesicles; 2) gene expression modulation via microRNAs (miR), in particular via miR-17-3p and miR-222; and 3) modulation of cardiac cellular metabolism and mitochondrial adaption. Understanding the cellular mechanisms, which generate an exercise-induced cardioprotective cellular phenotype with physiological hypertrophy and enhanced proliferational capacity may give rise to novel therapeutic targets. These may open up innovative strategies to preserve cardiac function after myocardial injury as well as in aged cardiac tissue.


2020 ◽  
Vol 21 (17) ◽  
pp. 6320
Author(s):  
Shanshan Gao ◽  
Deepa Puthenvedu ◽  
Raffaella Lombardi ◽  
Suet Nee Chen

Arrhythmogenic cardiomyopathy (ACM) is a heritable myocardial disease that manifests with cardiac arrhythmias, syncope, sudden cardiac death, and heart failure in the advanced stages. The pathological hallmark of ACM is a gradual replacement of the myocardium by fibroadiposis, which typically starts from the epicardium. Molecular genetic studies have identified causal mutations predominantly in genes encoding for desmosomal proteins; however, non-desmosomal causal mutations have also been described, including genes coding for nuclear proteins, cytoskeleton componentsand proteins involved in excitation-contraction coupling. Despite the poor prognosis, currently available treatments can only partially control symptoms and to date there is no effective therapy for ACM. Inhibition of the canonical Wnt/β-catenin pathway and activation of the Hippo and the TGF-β pathways have been implicated in the pathogenesis of ACM. Yet, our understanding of the molecular mechanisms involved in the development of the disease and the cell source of fibroadiposis remains incomplete. Elucidation of the pathogenesis of the disease could facilitate targeted approaches for treatment. In this manuscript we will provide a comprehensive review of the proposed molecular and cellular mechanisms of the pathogenesis of ACM, including the emerging evidence on abnormal calcium homeostasis and inflammatory/autoimmune response. Moreover, we will propose novel hypothesis about the role of epicardial cells and paracrine factors in the development of the phenotype. Finally, we will discuss potential innovative therapeutic approaches based on the growing knowledge in the field.


2018 ◽  
Vol 43 (11) ◽  
pp. 1194-1206 ◽  
Author(s):  
Sean Y. Ng ◽  
Alexander Manta ◽  
Vladimir Ljubicic

Neuromuscular disorders (NMDs) are chronic conditions that affect the neuromuscular system. Many NMDs currently have no cure; however, as more effective therapies become available for NMD patients, these individuals will exhibit improved health and/or prolonged lifespans. As a result, persons with NMDs will likely desire to engage in a more diverse variety of activities of daily living, including increased physical activity or exercise. Therefore, there is a need to increase our knowledge of the effects of acute exercise and chronic training on the neuromuscular system in NMD contexts. Here, we discuss the disease mechanisms and exercise biology of Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and myotonic dystrophy type 1 (DM1), which are among the most prevalent NMDs in children and adults. Evidence from clinical and preclinical studies are reviewed, with emphasis on the functional outcomes of exercise, as well as on the putative cellular mechanisms that drive exercise-induced remodelling of the neuromuscular system. Continued investigation of the molecular mechanisms of exercise adaptation in DMD, SMA, and DM1 will assist in enhancing our understanding of the biology of these most prevalent NMDs. This information may also be useful for guiding the development of novel therapeutic targets for future pursuit.


2018 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Ian Begeman ◽  
Junsu Kang

The heart plays the vital role of propelling blood to the entire body, which is essential to life. While maintaining heart function is critical, adult mammalian hearts poorly regenerate damaged cardiac tissue upon injury and form scar tissue instead. Unlike adult mammals, adult zebrafish can regenerate injured hearts with no sign of scarring, making zebrafish an ideal model system with which to study the molecular mechanisms underlying heart regeneration. Investigation of heart regeneration in zebrafish together with mice has revealed multiple cardiac regeneration genes that are induced by injury to facilitate heart regeneration. Altered expression of these regeneration genes in adult mammals is one of the main causes of heart regeneration failure. Previous studies have focused on the roles of these regeneration genes, yet the regulatory mechanisms by which the expression of cardiac regeneration genes is precisely controlled are largely unknown. In this review, we will discuss the importance of differential gene expression for heart regeneration, the recent discovery of cardiac injury or regeneration enhancers, and their impact on heart regeneration.


2015 ◽  
pp. S685-S696 ◽  
Author(s):  
L. GRIECSOVÁ ◽  
V. FARKAŠOVÁ ◽  
I. GÁBLOVSKÝ ◽  
V. K. M. KHANDELWAL ◽  
I. BERNÁTOVÁ ◽  
...  

Reduced tolerance to ischemia/reperfusion (IR) injury has been shown in elder human and animal hearts, however, the onset of this unfavorable phenotype and cellular mechanisms behind remain unknown. Moreover, aging may interfere with the mechanisms of innate cardioprotection (preconditioning, PC) and cause defects in protective cell signaling. We studied the changes in myocardial function and response to ischemia, as well as selected proteins involved in “pro-survival” pathways in the hearts from juvenile (1.5 months), younger adult (3 months) and mature adult (6 months) male Wistar rats. In Langendorff-perfused hearts exposed to 30-min ischemia/2-h reperfusion with or without prior PC (one cycle of 5-min ischemia/5-min reperfusion), we measured occurrence of reperfusion-induced arrhythmias, recovery of contractile function (left ventricular developed pressure, LVDP, in % of pre-ischemic values), and size of infarction (IS, in % of area at risk size, TTC staining and computerized planimetry). In parallel groups, LV tissue was sampled for the detection of protein levels (WB) of Akt kinase (an effector of PI3-kinase), phosphorylated (activated) Akt (p-Akt), its target endothelial NO synthase (eNOS) and protein kinase Cε (PKCε) as components of “pro-survival” cascades. Maturation did not affect heart function, however, it impaired cardiac response to lethal IR injury (increased IS) and promoted arrhythmogenesis. PC reduced the occurrence of malignant arrhythmias, IS and improved LVDP recovery in the younger animals, while its efficacy was attenuated in the mature adults. Loss of PC protection was associated with age-dependent reduced Akt phosphorylation and levels of eNOS and PKCε in the hearts of mature animals compared with the younger ones, as well as with a failure of PC to upregulate these proteins. Aging-related alterations in myocardial response to ischemia may be caused by dysfunction of proteins involved in protective cell signaling that may occur already during the process of maturation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ying Zhang ◽  
Ning Chen

High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.


2020 ◽  
Vol 15 (7) ◽  
pp. 559-569 ◽  
Author(s):  
Zhen Chang ◽  
Youhan Wang ◽  
Chang Liu ◽  
Wanli Smith ◽  
Lingbo Kong

Macrophages M2 polarization have been taken as an anti-inflammatory progression during inflammation. Natural plant-derived products, with potential therapeutic and preventive activities against inflammatory diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities. However, the molecular mechanisms about how different kinds of natural compounds regulate macrophages polarization still unclear. Therefore, in the current review, we summarized the detailed research progress on the active compounds derived from herbal plants with regulating effects on macrophages, especially M2 polarization. These natural occurring compounds including flavonoids, terpenoids, glycosides, lignans, coumarins, alkaloids, polyphenols and quinones. In addition, we extensively discussed the cellular mechanisms underlying the M2 polarization for each compound, which could provide potential therapeutic strategies aiming macrophages M2 polarization.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


Sign in / Sign up

Export Citation Format

Share Document