scholarly journals Neurotransmitter Profiles Are Altered in the Gut and Brain of Mice Mono-Associated with Bifidobacterium dentium

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1091
Author(s):  
Berkley Luck ◽  
Thomas D. Horvath ◽  
Kristen A. Engevik ◽  
Wenly Ruan ◽  
Sigmund J. Haidacher ◽  
...  

Background: Accumulating evidence indicates that the gut microbiota can synthesize neurotransmitters as well as impact host-derived neurotransmitter levels. In the past, it has been challenging to decipher which microbes influence neurotransmitters due to the complexity of the gut microbiota. Methods: To address whether a single microbe, Bifidobacterium dentium, could regulate important neurotransmitters, we examined Bifidobacteria genomes and explored neurotransmitter pathways in secreted cell-free supernatant using LC-MS/MS. To determine if B. dentium could impact neurotransmitters in vivo, we mono-associated germ-free mice with B. dentium ATCC 27678 and examined fecal and brain neurotransmitter concentrations. Results: We found that B. dentium possessed the enzymatic machinery to generate γ-aminobutyric acid (GABA) from glutamate, glutamine, and succinate. Consistent with the genome analysis, we found that B. dentium secreted GABA in a fully defined microbial media and elevated fecal GABA in B. dentium mono-associated mice compared to germ-free controls. We also examined the tyrosine/dopamine pathway and found that B. dentium could synthesize tyrosine, but could not generate L-dopa, dopamine, norepinephrine, or epinephrine. In vivo, we found that B. dentium mono-associated mice had elevated levels of tyrosine in the feces and brain. Conclusions: These data indicate that B. dentium can contribute to in vivo neurotransmitter regulation.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Shuwei Zhang ◽  
Yantao Zhao ◽  
Christina Ohland ◽  
Christian Jobin ◽  
Shengmin Sang

Abstract Objectives The in vivo mechanism of tea polyphenol-mediated prevention of many chronic diseases is still largely unknown. Studies have shown that accumulation of toxic reactive cellular metabolites, such as ammonia and reactive carbonyl species (RCS), is one of the causing factors to the development of many chronic diseases. The objective of this study is to investigated the in vivo interaction between tea polyphenols and ammonia and RCS. Methods In mice, we gave 200 mg/kg tea polyphenol ((-)-epigallocatechin-3-gallate (EGCG) or theaflavin) to CD-1 mice, 129/SvEv specific-pathogen-free (SPF) mice, or germ-free (GF) mice. Urinary and fecal samples were collected in metabolic cages for 24 h. In humans, two healthy volunteers drank 4 cups of Lipton green tea every day for four days. On the fourth day, 24 h urinary and fecal samples were collected after consuming the first cup of tea. Using LC tandem mass, we searched the formation of the aminated and RCS conjugated metabolites of tea polyphenols. Chemical standards were synthesized to confirm the structures of these metabolites. In order to study the impact of gut microbiota on the formation of these metabolites, we also quantified the concentrations of these metabolites in SPF and GF mice. Results We found that both EGCG and theaflavin could rapidly react with ammonia to generate the aminated metabolites. Both tea polyphenols and their aminated metabolites could further scavenge RCS, such as methylglyoxal (MGO), malondialdehyde (MDA), and trans-4-hydroxy-2-nonenal (4-HNE), to produce the RCS conjugates of tea polyphenols and the aminated tea polyphenols. Both the aminated and the RCS conjugated metabolites of EGCG were detected in human after drinking four cups of green tea per day. By comparing the levels of the aminated and the RCS conjugated metabolites in EGCG or theaflavin exposed germ-free (GF) mice and specific-pathogen-free (SPF) mice, we demonstrated that gut microbiota facilitate the formation of the aminated metabolites of tea polyphenols, the RCS conjugates of tea polyphenols, and the RCS conjugates of the aminated tea polyphenols. Conclusions Altogether, this study provides in vivo evidences that tea polyphenols have the capacity to scavenge toxic reactive metabolic wastes. This finding opens a new window to understand the underlying mechanisms by which drinking tea could prevent the development of chronic diseases. Funding Sources We gratefully acknowledge financial support from NIH R01 grant AT008623 to this work.


2020 ◽  
Author(s):  
Gabriel A. Russell ◽  
Cynthia Faubert ◽  
Elena F. Verdu ◽  
Irah L. King

ABSTRACTHelminth-induced alterations to the gut microbiota have been shown to affect immune responses at local and peripheral sites. Studies examining helminth-microbiota interactions, however, have been limited due to the practical constraints of performing germ-free experiments with parasites that thrive in microbial-rich conditions to complete their development. The infectious (L3) larvae of the murine helminth Heligmosomoides polygyrus bakeri (Hpb), for example, are normally reared using a fecal-culture method and therefore are inherently unsuitable for germ-free studies in vivo. Herein, we detail an adapted methodology for rearing effectively germ-free Hpb larvae that are able to maintain the axenic status of a germ-free host during infection. We validate that these larvae do not display any fitness defects relative to fecal-grown larvae and evoke a comparable immune response in vivo. Characterization of axenic Hpb infection reveals that the commensal microbiota play a multifaceted role during infection - curbing the anti-Hpb Th2 response and directing the resolution of tissue granulomas, while simultaneously promoting parasite fitness. Overall these data demonstrate a mutualistic relationship between commensal microbes, enteric helminths and the infected host.


Author(s):  
Fei Huang ◽  
Xiaojun Wu

Anxiety and depression are highly prevalent mental illnesses worldwide and have long been thought to be closely associated to neurotransmitter modulation. There is growing evidence indicating that changes in the composition of the gut microbiota are related to mental health including anxiety and depression. In this review, we focus on combining the intestinal microbiota with serotonergic, dopaminergic, and noradrenergic neurotransmission in brain, with special emphasis on the anxiety- and depression-like behaviors in stress-related rodent models. Therefore, we reviewed studies conducted on germ-free rodents, or in animals subjected to microbiota absence using antibiotics, as well as via the usage of probiotics. All the results strongly support that the brain neurotransmitter modulation by gut microbiota is indispensable to the physiopathology of anxiety and depression. However, a lot of work is needed to determine how gut microbiota mediated neurotransmission in human brain has any physiological significance and, if any, how it can be used in therapy. Overall, the gut microbiota provides a novel way to alter neurotransmitter modulation in the brain and treat gut–brain axis diseases, such as anxiety and depression.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S42-S42
Author(s):  
Kohei Sugihara ◽  
Nobuhiko Kamada

Abstract Background Recent accumulating evidence suggests that amino acids have crucial roles in the maintenance of intestinal homeostasis. In inflammatory bowel disease (IBD), amino acid metabolism is changed in both host and the gut microbiota. Among amino acids, L-serine plays a central role in several metabolic processes that are essential for the growth and survival of both mammalian and bacterial cells. However, the role of L-serine in intestinal homeostasis and IBD remains incompletely understood. In this study, we investigated the effect of dietary L-serine on intestinal inflammation in a murine model of colitis. Methods Specific pathogen-free (SPF) mice were fed either a control diet (amino acid-based diet) or an L-serine-deficient diet (SDD). Colitis was induced by the treatment of dextran sodium sulfate (DSS). The gut microbiome was analyzed by 16S rRNA sequencing. We also evaluate the effect of dietary L-serine in germ-free mice and gnotobiotic mice that were colonized by a consortium of non-mucolytic bacterial strains or the consortium plus mucolytic bacterial strains. Results We found that the SDD exacerbated experimental colitis in SPF mice. However, the severity of colitis in SDD-fed mice was comparable to control diet-fed mice in germ-free condition, suggesting that the gut microbiota is required for exacerbation of colitis caused by the restriction of dietary L-serine. The gut microbiome analysis revealed that dietary L-serine restriction fosters the blooms of a mucus-degrading bacterium Akkermansia muciniphila and adherent-invasive Escherichia coli in the inflamed gut. Consistent with the expansion of mucolytic bacteria, SDD-fed mice showed a loss of the intestinal mucus layer. Dysfunction of the mucus barrier resulted in increased intestinal permeability, thereby leading to bacterial translocation to the intestinal mucosa, which subsequently increased the severity of colitis. The increased intestinal permeability and subsequent bacterial translocation were observed in SDD-fed gnotobiotic mice that colonized by mucolytic bacteria. In contrast, dietary L-serine restriction did not alter intestinal barrier integrity in gnotobiotic mice that colonized only by non-mucolytic bacteria. Conclusion Our results suggest that dietary L-serine regulates the integrity of the intestinal mucus barrier during inflammation by limiting the expansion of mucus degrading bacteria.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 10-11
Author(s):  
J Pujo ◽  
G De Palma ◽  
J Lu ◽  
S M Collins ◽  
P Bercik

Abstract Background Abdominal pain is a common complaint in patients with chronic gastrointestinal disorders. Accumulating evidence suggests that gut microbiota is an important determinant of gut function, including visceral sensitivity. Germ-free (GF) mice have been shown to display visceral hypersensitivity, which normalizes after colonization. Sex also appears to play a key role in visceral sensitivity, as women report more abdominal pain than men. Thus, both gut bacteria and sex are important in the regulation of gut nociception, but the underlying mechanisms remain poorly understood. Aims To investigate the role of gut microbiota and sex in abdominal pain. Methods We used primary cultures of sensory neurons from dorsal root ganglia (DRG) of female and male conventionally raised (SPF) or germ-free (GF) mice (7–18 weeks old). To study the visceral afferent activity in vitro, calcium mobilization in DRG sensory neurons was measured by inverted fluorescence microscope using a fluorescent calcium probe Fluo-4 (1mM). Two parameters were considered i) the percentage of responding neurons ii) the intensity of the neuronal response. First, DRG sensory neurons were stimulated by a TRPV1 agonist capsaicin (12.5nM, 125nM and 1.25µM) or by a mixture of G-protein coupled receptors agonist (GPCR: bradykinin, histamine and serotonin; 1µM, 10µM and 100µM). We next measured the neuronal production of substance P and calcitonin gene-related peptide (CGRP), two neuropeptides associated with nociception, in response to capsaicin (1.25µM) or GPCR agonists (100µM) by ELISA and EIA, respectively. Results The percentage of neurons responding to capsaicin and GPCR agonists was similar in male and female SPF and GF mice. However, the intensity of the neuronal response was higher in SPF male compared to SPF female in response to capsaicin (125nM: p=0.0336; 1.25µM: p=0.033) but not to GPCR agonists. Neuronal activation was similar in GF and SPF mice of both sexes after administration of capsaicin or GPCR agonists. Furthermore, substance P and CGRP production by sensory neurons induced by capsaicin or GPCR agonists was similar in SPF and GF mice, regardless of sex. However, while the response to capsaicin was similar, the GPCR agonists-induced production of substance P was higher in SPF male mice compared to SPF females (p=0.003). The GPCR agonists-induced production of CGRP was similar in SPF male and female mice. Conclusions Our data suggest that at the level of DRG neurons, the absence of gut microbiota does not predispose to visceral hypersensitivity. The intensity of DRG neuronal responses to capsaicin and the GPCR agonists-induced production of substance P are higher in male compared to female mice, in contrast to previously published studies in various models of acute and chronic pain. Further studies are thus needed to investigate the role of sex in visceral sensitivity. Funding Agencies CIHR


Lab on a Chip ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 795-820
Author(s):  
Andrea Spanu ◽  
Laura Martines ◽  
Annalisa Bonfiglio

This review focuses on the applications of organic transistors in cellular interfacing. It offers a comprehensive retrospective of the past, an overview of the latest innovations, and a glance on the future perspectives of this fast-evolving field.


Sign in / Sign up

Export Citation Format

Share Document