scholarly journals The Effects of Macrophage Phenotype on Osteogenic Differentiation of MSCs in the Presence of Polyethylene Particles

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 499
Author(s):  
Qi Gao ◽  
Claire Rhee ◽  
Masahiro Maruyama ◽  
Zhong Li ◽  
Huaishuang Shen ◽  
...  

Wear debris generated from the bearing surfaces of joint arthroplasties leads to acute and chronic inflammation, which is strongly associated with implant failure. Macrophages derived from monocytes recruited to the local tissues have a significant impact on bone healing and regeneration. Macrophages can adopt various functional phenotypes. While M1 macrophages are pro-inflammatory, M2 macrophages express factors important for tissue repair. Here, we established a 3D co-culture system to investigate how the immune system influences the osteogenic differentiation of mesenchymal stem cells (MSCs) in the presence of micron-sized particles. This system allowed for the simulation of an inflammatory reaction via the addition of Lipopolysaccharide-contaminated polyethylene particles (cPE) and the characterization of bone formation using micro-CT and gene and protein expression. Co-cultures of MSCs with M2 macrophages in the presence of cPE in a 3D environment resulted in the increased expression of osteogenic markers, suggesting facilitation of bone formation. In this model, the upregulation of M2 macrophage expression of immune-associated genes and cytokines contributes to enhanced bone formation by MSCs. This study elucidates how the immune system modulates bone healing in response to an inflammatory stimulus using a unique 3D culture system.

2021 ◽  
Vol 11 ◽  
Author(s):  
Yutao Wang ◽  
Kexin Yan ◽  
Jianfeng Wang ◽  
Jiaxing Lin ◽  
Jianbin Bi

PurposeTherapeutic targets of tumor-associated macrophages have been discovered and used clinically as immunotherapy. M2 macrophages are tumor-associated macrophages that promote cancer progression. This article explores the related factors and the effects of type M2 macrophages.MethodWe obtained bladder cancer (BC) sequencing data from TCGA and GSE31189. We used the CIBERSORT algorithm calculate M2 macrophage proportions among 22 type immune cells. The Estimate package was used to measure BC purity. M2 macrophage-related genes were selected using WGCNA. Receiver operating characteristic curves and Kaplan–Meier analyses were performed to determine the risk score, conducted for M2 macrophage-related factors. The Pearson test was used to determine the correlation among M2 macrophage-related genes, clinical phenotype, immune phenotype and tumor mutation burden (TMB). The TIMER database was used to calculate correlations among M2 macrophages and other cancers.ResultsExpression of four M2 macrophages co-expressed genes (CD163, CD209, CSF1, MMD) positively correlated with infiltration of M2 macrophages, which were enriched in the negative regulation of immune system process and the positive regulation of tumor necrosis factor production. M2 macrophage-related factors are robust biomarkers for predicting the BC and immune phenotypes. The Cox regression model built on these four co-expression factors showed a close correlation with outcome (AUC = 0.64). The four co-expression factors negatively correlated outcome and TMB.ConclusionFour co-expressed genes promote high levels of infiltration of type M2 macrophages in the negative regulation of immune system processes and the positive regulation of tumor necrosis factor production processes. These co-expressed genes and the biological process they involve might suggest new strategies for regulation of chemotaxis in M2 macrophages.


2013 ◽  
Vol 13 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Francis H. Shen ◽  
Brian C. Werner ◽  
Haixiang Liang ◽  
Hulan Shang ◽  
Ning Yang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Elizabeth Olmsted-Davis ◽  
Julio Mejia ◽  
Elizabeth Salisbury ◽  
Zbigniew Gugala ◽  
Alan R. Davis

We previously identified transient brown adipocyte-like cells associated with heterotopic ossification (HO). These ancillary cells support new vessel synthesis essential to bone formation. Recent studies have shown that the M2 macrophage contributes to tissue regeneration in a similar way. To further define the phenotype of these brown adipocyte-like cells they were isolated and characterized by single-cell RNAseq (scRNAseq). Analysis of the transcriptome and the presence of surface markers specific for macrophages suggest that these cells are M2 macrophages. To validate these findings, clodronate liposomes were delivered to the tissues during HO, and the results showed both a significant reduction in these macrophages as well as bone formation. These cells were isolated and shown in culture to polarize towards either M1 or M2 similar to other macrophages. To confirm that these are M2 macrophages, mice received lipopolysacheride (LPS), which induces proinflammation and M1 macrophages. The results showed a significant decrease in this specific population and bone formation, suggesting an essential role for M2 macrophages in the production of bone. To determine if these macrophages are specific to HO, we isolated these cells using fluorescence-activated cell sorting (FACS) from a bone defect model and subjected them to scRNAseq. Surprisingly, the macrophage populations overlapped between the two groups (HO-derived versus callus) suggesting that they may be essential ancillary cells for bone formation in general and not selective to HO. Of further note, their unique metabolism and lipogenic properties suggest the potential for unique cross talk between these cells and the newly forming bone.


2021 ◽  
Author(s):  
Kai Tie ◽  
Jinghang Cai ◽  
Jun Qin ◽  
Hao Xiao ◽  
Yangfan Shangguan ◽  
...  

Abstract Background: Bone formation plays an important role in early tendon-bone healing after anterior cruciate ligament reconstruction (ACLR). Dedifferentiated osteogenic bone marrow mesenchymal stem cells (De-BMSCs) have enhanced osteogenic potential. This study aimed to investigate the effect of De-BMSCs transplantation on the promotion of bone formation at the tendon-bone interface after ACLR and to further explore the molecular mechanism of the enhanced osteogenic potential of De-BMSCs.Methods: BMSCs from the femurs and tibias of New Zealand White rabbits were subjected to osteogenic induction and then cultured in medium without osteogenic factors; the obtained cell population was termed De-BMSCs. De-BMSCs were induced to undergo osteo-, chondro- and adipo-differentiation in vitro to examine the characteristics of primitive stem cells. An ACLR model with a semitendinosus tendon was established in rabbits, and the animals were divided into a control group, BMSCs group and De-BMSCs group. At 12 weeks after surgery, the rabbits in each group were sacrificed to evaluate tendon-bone healing by histologic staining, micro–computed tomography (micro-CT) examination, and biomechanical testing. During osteogenic differentiation of De-BMSCs, an siRNA targeting nuclear factor of activated T cells 1 (NFATc1) was used to verify the molecular mechanism of the enhanced osteogenic potential of De-BMSCs.Results: De-BMSCs exhibited some properties similar to BMSCs, including multiple differentiation potential and cell surface markers. Bone formation at the tendon-bone interface in the De-BMSCs group was significantly increased, and biomechanical strength was significantly improved. During the osteogenic differentiation of De-BMSCs, the expression of Nanog and NFATc1 was synergistically increased, which promoted the interaction of NFATc1 and Osterix, resulting in increased expression of osteoblast marker genes such as COL1A, OCN, and OPN.Conclusions: De-BMSCs transplantation could promote bone formation at the tendon-bone interface after ACLR and improve the biomechanical strength of the reconstruction. The Nanog/NFATc1/Osterix signaling pathway mediated the enhanced osteogenic differentiation efficiency of De-BMSCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Liangping Li ◽  
Zemin Ling ◽  
Wenwu Dong ◽  
Xiaoying Chen ◽  
Corina Vater ◽  
...  

Oxidative stress (OS) caused by multiple factors occurs after the implantation of bone repair materials. DNA methylation plays an important role in the regulation of osteogenic differentiation. Moreover, recent studies suggest that DNA methyltransferases (Dnmts) are involved in bone formation and resorption. However, the effect and mechanism of DNA methylation changes induced by OS on bone formation after implantation still remain unknown. Three-dimensional (3D) cell culture systems are much closer to the real situation than traditional monolayer cell culture systems in mimicking the in vivo microenvironment. We have developed porous 3D scaffolds composed of mineralized collagen type I, which mimics the composition of the extracellular matrix of human bone. Here, we first established a 3D culture model of human mesenchymal stem cells (hMSCs) seeded in the biomimetic scaffolds using 160 μM H2O2 to simulate the microenvironment of osteogenesis after implantation. Our results showed that decreased methylation levels of ALP and RUNX2 were induced by H2O2 treatment in hMSCs cultivated in the 3D scaffolds. Furthermore, we found that Dnmt3a was significantly downregulated in a porcine anterior lumbar interbody fusion model and was confirmed to be reduced by H2O2 treatment using the 3D in vitro model. The hypomethylation of ALP and RUNX2 induced by H2O2 treatment was abolished by Dnmt3a overexpression. Moreover, our findings demonstrated that the Dnmt inhibitor 5-AZA can enhance osteogenic differentiation of hMSCs under OS, evidenced by the increased expression of ALP and RUNX2 accompanied by the decreased DNA methylation of ALP and RUNX2. Taken together, these results suggest that Dnmt3a-mediated DNA methylation changes regulate osteogenic differentiation and 5-AZA can enhance osteogenic differentiation via the hypomethylation of ALP and RUNX2 under OS. The biomimetic 3D scaffolds combined with 5-AZA and antioxidants may serve as a promising novel strategy to improve osteogenesis after implantation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Tie ◽  
Jinghang Cai ◽  
Jun Qin ◽  
Hao Xiao ◽  
Yangfan Shangguan ◽  
...  

Abstract Background Bone formation plays an important role in early tendon–bone healing after anterior cruciate ligament reconstruction (ACLR). Dedifferentiated osteogenic bone marrow mesenchymal stem cells (De-BMSCs) have enhanced osteogenic potential. This study aimed to investigate the effect of De-BMSCs transplantation on the promotion of bone formation at the tendon–bone interface after ACLR and to further explore the molecular mechanism of the enhanced osteogenic potential of De-BMSCs. Methods BMSCs from the femurs and tibias of New Zealand white rabbits were subjected to osteogenic induction and then cultured in medium without osteogenic factors; the obtained cell population was termed De-BMSCs. De-BMSCs were induced to undergo osteo-, chondro- and adipo-differentiation in vitro to examine the characteristics of primitive stem cells. An ACLR model with a semitendinosus tendon was established in rabbits, and the animals were divided into a control group, BMSCs group, and De-BMSCs group. At 12 weeks after surgery, the rabbits in each group were sacrificed to evaluate tendon–bone healing by histologic staining, micro-computed tomography (micro-CT) examination, and biomechanical testing. During osteogenic differentiation of De-BMSCs, an siRNA targeting nuclear factor of activated T-cells 1 (NFATc1) was used to verify the molecular mechanism of the enhanced osteogenic potential of De-BMSCs. Results De-BMSCs exhibited some properties similar to BMSCs, including multiple differentiation potential and cell surface markers. Bone formation at the tendon–bone interface in the De-BMSCs group was significantly increased, and biomechanical strength was significantly improved. During the osteogenic differentiation of De-BMSCs, the expression of Nanog and NFATc1 was synergistically increased, which promoted the interaction of NFATc1 and Osterix, resulting in increased expression of osteoblast marker genes such as COL1A, OCN, and OPN. Conclusions De-BMSCs transplantation could promote bone formation at the tendon–bone interface after ACLR and improve the biomechanical strength of the reconstruction. The Nanog/NFATc1/Osterix signaling pathway mediated the enhanced osteogenic differentiation efficiency of De-BMSCs.


2012 ◽  
Vol 12 (9) ◽  
pp. S26-S27
Author(s):  
Francis H. Shen ◽  
Brian C. Werner ◽  
Haixiang Liang ◽  
Hulan Shang ◽  
Ning Yang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Andrew Wofford ◽  
Austin Bow ◽  
Steven Newby ◽  
Seth Brooks ◽  
Rachel Rodriguez ◽  
...  

Background. Due to restorative concerns, bone regenerative therapies have garnered much attention in the field of human oral/maxillofacial surgery. Current treatments using autologous and allogenic bone grafts suffer from inherent challenges, hence the ideal bone replacement therapy is yet to be found. Establishing a model by which MSCs can be placed in a clinically acceptable bone defect to promote bone healing will prove valuable to oral/maxillofacial surgeons. Methods. Human adipose tissue-derived MSCs were seeded onto Gelfoam® and their viability, proliferation, and osteogenic differentiation was evaluated in vitro. Subsequently, the construct was implanted in a rat maxillary alveolar bone defect to assess in vivo bone healing and regeneration. Results. Human MSCs were adhered, proliferated, and uniformly distributed, and underwent osteogenic differentiation on Gelfoam®, comparable with the tissue culture surface. Data confirmed that Gelfoam® could be used as a scaffold for cell attachment and a delivery vehicle to implant MSCs in vivo. Histomorphometric analyses of bones harvested from rats treated with hMSCs showed statistically significant increase in collagen/early bone formation, with cells positive for osteogenic and angiogenic markers in the defect site. This pattern was visible as early as 4 weeks post treatment. Conclusions. Xenogenically implanted human MSCs have the potential to heal an alveolar tooth defect in rats. Gelfoam®, a commonly used clinical biomaterial, can serve as a scaffold to deliver and maintain MSCs to the defect site. Translating this strategy to preclinical animal models provides hope for bone tissue engineering.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Manal Nabil Hagar ◽  
Farinawati Yazid ◽  
Nur Atmaliya Luchman ◽  
Shahrul Hisham Zainal Ariffin ◽  
Rohaya Megat Abdul Wahab

Abstract Background Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group. Methodology The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture). Results The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p < 0.01) in SHED as compared to DPSC and MC3T3-E1 in 2D and 3D cultures. Conclusion gHA scaffold is an optimal scaffold as it induced osteogenesis in vitro. Besides, SHED had the highest osteogenic potential making them a preferred candidate for tissue engineering in comparison with DPSC.


2021 ◽  
Vol 22 (3) ◽  
pp. 1169
Author(s):  
Yuhan Chang ◽  
Chih-Chien Hu ◽  
Ying-Yu Wu ◽  
Steve W. N. Ueng ◽  
Chih-Hsiang Chang ◽  
...  

Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.


Sign in / Sign up

Export Citation Format

Share Document