scholarly journals In Vivo Lentiviral Gene Delivery of HLA-DR and Vaccination of Humanized Mice for Improving the Human T and B Cell Immune Reconstitution

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 961
Author(s):  
Suresh Kumar ◽  
Johannes Koenig ◽  
Andreas Schneider ◽  
Fredrik Wermeling ◽  
Sanjaykumar Boddul ◽  
...  

Humanized mouse models generated with human hematopoietic stem cells (HSCs) and reconstituting the human immune system (HIS-mice) are invigorating preclinical testing of vaccines and immunotherapies. We have recently shown that human engineered dendritic cells boosted bonafide human T and B cell maturation and antigen-specific responses in HIS-mice. Here, we evaluated a cell-free system based on in vivo co-delivery of lentiviral vectors (LVs) for expression of a human leukocyte antigen (HLA-DRA*01/ HLA-DRB1*0401 functional complex, “DR4”), and a LV vaccine expressing human cytokines (GM-CSF and IFN-α) and a human cytomegalovirus gB antigen (HCMV-gB). Humanized NOD/Rag1null/IL2Rγnull (NRG) mice injected by i.v. with LV-DR4/fLuc showed long-lasting (up to 20 weeks) vector distribution and expression in the spleen and liver. In vivo administration of the LV vaccine after LV-DR4/fLuc delivery boosted the cellularity of lymph nodes, promoted maturation of terminal effector CD4+ T cells, and promoted significantly higher development of IgG+ and IgA+ B cells. This modular lentigenic system opens several perspectives for basic human immunology research and preclinical utilization of LVs to deliver HLAs into HIS-mice.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2623-2623
Author(s):  
Roshni Patel ◽  
Baskar Ramdas ◽  
Lisa Deng ◽  
Victoria Jideonwo-Auman ◽  
Rebecca J Chan ◽  
...  

Abstract Juvenile myelomonocytic leukemia (JMML) is an aggressive childhood myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN). It has no effective treatments and the only treatment that prolongs survival is allogeneic hematopoietic stem cell transplant (HSCT). However, even with this aggressive intervention, approximately 50% of patients relapse with JMML within five years. The most commonly mutated gene in JMML patients is PTPN11, which encodes for the non-receptor protein tyrosine phosphatase SHP2. Gain-of-function (GOF) mutations in SHP2 lead to hyperactive RAS signaling and PTPN11 is recognized as a well-established oncogene in various leukemia's. Our lab has shown that p110δ, the hematopoietic-specific catalytic subunit of phosphoinositide 3-kinase (PI3K), plays an important role downstream of SHP2-signaling. Recently, we have shown that in vivo treatment with a specific pharmacologic p110δ inhibitor significantly prolongs the overall survival and reduces the splenomegaly seen in GOF Shp2-expressing mice. Having observed the effectiveness of PI3K p110δ inhibition in correcting the mutant Shp2-induced leukemia phenotype in vitro and in prolonging survival of mice in vivo, we next explored signaling molecules with which p110δ may be interacting to promote the aberrant Shp2 signaling in myeloid cells. In recent years, a key player in B cell receptor (BCR) signaling, Bruton's tyrosine kinase (BTK), has come under intense study in the field of lymphocytic leukemia and lymphoma research. Ibrutinib, a small molecule inhibitor targeting BTK, has proven to be very effective and has received FDA-approval for the treatment of a variety of B cell malignancies. Although research on BTK up to this point has focused on B cell malignancies, BTK is also highly expressed in myeloid cells and mice lacking BTK are defective in many myeloid cell functions. Thus, it is possible that BTK signaling may also play an important role in myeloid malignancies, such as JMML. Given the collaboration of BTK and p110δ in BCR signaling, the key role of p110δ in GOF Shp2-induced leukemia, and the high expression of BTK in myeloid cells, we hypothesized that BTK and p110δ function cooperatively in GOF Shp2-expressing myeloid cells to promote MPN. To test this hypothesis, we examined the potential collaboration of GM-CSF-stimulated BTK and p110δ in GOF Shp2-expressing myeloid cells and tested the inhibitor combination in vivo. We show that BTK cooperates with p110δ to promote GOF Shp2-induced leukemia. We show a role for B cell adaptor for PI3K (BCAP) in BTK upregulation of PI3K activity. In mutant Shp2 macrophages, BCAP phosphorylation is increased specifically in the larger isoforms regulating PI3K activation, and BTK inhibition results in a dose-dependent reduction in this phosphorylation. Our findings show that the MPN caused by GOF Shp2 is due to cooperative signaling between p110δ and BTK, which forms a positive feedback loop with BCAP, thus leading to more Akt/Erk hyperphosphorylation and hyperproliferation in response to GM-CSF. Given these in vitro observations, we treated GOF Shp2 bearing mice with a combination of a PI3K p110δ-specific inhibitor and, a BTK-specific inhibitor, or single agents alone and performed hematopoietic analysis. The combination treatment scheme completely rescued monocytosis and uniquely ameliorated thrombocytopenia compared to single agent treatment of diseased mice. In addition, splenomegaly was also completely rescued in all three treatment groups compared to vehicle. Detailed flow cytometric analysis of bone marrow hematopoietic stem and progenitor cell populations revealed significant repression of LSK, HPC1 and granulocyte macrophage progenitors (GMPs) with a concomitant increase in the megakaryocyte precursors (MKPs) in drug combination treated mice vs. other groups. Consistent with these observations, a significant reduction in mature myeloid cells was noted in the spleen and a complete rescue in the production of peripheral blood platelets was observed in the mutant mice treated with a combination of the two drugs. Thus, combination therapy with PI3K p110δ- and BTK-specific inhibitors profoundly rescues disease state hallmarks of JMML, and may warrant further clinical investigation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4342-4346 ◽  
Author(s):  
Claudiu V. Cotta ◽  
Zheng Zhang ◽  
Hyung-Gyoon Kim ◽  
Christopher A. Klug

Abstract Progenitor B cells deficient in Pax5 are developmentally multipotent, suggesting that Pax5 is necessary to maintain commitment to the B-cell lineage. Commitment may be mediated, in part, by Pax5 repression of myeloid-specific genes. To determine whether Pax5 expression in multipotential cells is sufficient to restrict development to the B-cell lineage in vivo, we enforced expression of Pax5 in hematopoietic stem cells using a retroviral vector. Peripheral blood analysis of all animals reconstituted with Pax5-expressing cells indicated that more than 90% of Pax5-expressing cells were B220+ mature B cells that were not malignant. Further analysis showed that Pax5 completely blocked T-lineage development in the thymus but did not inhibit myelopoiesis or natural killer (NK) cell development in bone marrow. These results implicate Pax5 as a critical regulator of B- versus T-cell developmental fate and suggest that Pax5 may promote commitment to the B-cell lineage by mechanisms that are independent of myeloid gene repression.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4437-4447 ◽  
Author(s):  
Jason L. Hornick ◽  
Leslie A. Khawli ◽  
Peisheng Hu ◽  
Maureen Lynch ◽  
Peter M. Anderson ◽  
...  

Abstract Although monoclonal antibody (MoAb) therapy of the human malignant lymphomas has shown success in clinical trials, its full potential for the treatment of hematologic malignancies has yet to be realized. To expand the clinical potential of a promising human-mouse chimeric antihuman B-cell MoAb (chCLL-1) constructed using the variable domains cloned from the murine Lym-2 (muLym-2) hybridoma, fusion proteins containing granulocyte-macrophage colony-stimulating factor (GM-CSF) (chCLL-1/GM–CSF) or interleukin (IL)-2 (chCLL-1/IL–2) were generated and evaluated for in vitro cytotoxicity and in vivo tumor targeting. The glutamine synthetase gene amplification system was employed for high level expression of the recombinant fusion proteins. Antigenic specificity was confirmed by a competition radioimmunoassay against ARH-77 human myeloma cells. The activity of chCLL-1/GM–CSF was established by a colony formation assay, and the bioactivity of chCLL-1/IL–2 was confirmed by supporting the growth of an IL-2–dependent T-cell line. Antibody-dependent cellular cytotoxicity against ARH-77 target cells demonstrated that both fusion proteins mediate enhanced tumor cell lysis by human mononuclear cells. Finally, biodistribution and imaging studies in nude mice bearing ARH-77 xenografts indicated that the fusion proteins specifically target the tumors. These in vitro and in vivo data suggest that chCLL-1/GM–CSF and chCLL-1/IL–2 have potential as immunotherapeutic reagents for the treatment of B-cell malignancies.


Blood ◽  
1990 ◽  
Vol 75 (10) ◽  
pp. 1951-1959 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
DC Dale ◽  
WP Hammond

Abstract The number and growth factor requirements of committed progenitor cells (colony-forming units-granulocyte/macrophage and burst-forming units- erythroid) in three patients with cyclic neutropenia (two congenital, one acquired) were studied before and during therapy with recombinant human granulocyte colony-stimulating factor (G-CSF; 3 to 10 micrograms/kg/d). When the patients with congenital disease were treated with G-CSF, the cycling of blood cells persisted, but the cycle length was shortened from 21 days to 14 days, and the amplitude of variations in blood counts increased. There was a parallel shortening of the cycle and increase of the amplitude of variations (from two- to three-fold to 10- to 100-fold) in the number of both types of circulating progenitor cells in these two patients. In the patient with acquired cyclic neutropenia, cycling of both blood cells and progenitors could not be seen. In cultures deprived of fetal bovine serum, erythroid and myeloid bone marrow progenitor cells from untreated patients and from normals differed in growth factor responsiveness. As examples, maximal growth of granulocyte/macrophage (GM) colonies was induced by granulocyte/macrophage (GM)-CSF plus G-CSF in the patients, whereas a combination of GM-CSF, G-CSF and interleukin- 3 (IL-3) was required in the normals, and erythropoietin alone induced fourfold more erythroid bursts from cyclic neutropenic patients than from normal donors (46% versus 11% of the maximal colony number, respectively). The growth factor responsiveness of marrow progenitor cells slightly changed during the treatment toward the values observed with normal progenitors. These results indicate that treatment with G- CSF not only ameliorated the neutropenia, but also increased the amplitude and the frequency of oscillation of circulating progenitor cell numbers. These data are consistent with the hypothesis that G-CSF therapy affects the proliferation of the hematopoietic stem cell.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1653-1653
Author(s):  
Nobuyuki Onai ◽  
Aya Onai ◽  
Markus G. Manz

Abstract Most type-I interferon producing cells (IPCs) and dendritic cells (DCs) are non-dividing cells with a short in vivo half-live of several days, and thus need to be continuously replaced. A common differentiation pathway for IPCs and DCs, and accordingly, the existence of common IPC and DC progenitors remains controversial. Flt3-ligand (Flt3L) is a non-redundant cytokine for in vivo IPC and DC development: IPC and DC differentiation potential is confined to Flt3+-hematopoietic progenitors; Flt3L KO mice show massively reduced IPCs and DCs. In contrast to Flt3, the “myeloid” cytokines GM-CSF and M-CSF seem to be less relevant in steady-state IPC and DC differentiation, however, they might be critically important in inflammatory conditions. To identify a candidate common IPC and DC progenitor population, we evaluated Flt3 and “myeloid” cytokine receptor expression in mouse bone marrow. We found that c-kitintlin− cells contained a Flt3+M-CSFR+ fraction that in Flt3L supplemented cultures gave rise to about 95% pure CD11c+MHC class II+ cells, consisting of both CD11c+B220+ IPCs and CD11c+B220− DCs, at a efficiency comparable to that of hematopoietic stem cells. In the presence of GM-CSF, Flt3+M-CSFR+c-kitintlin− cells gave rise to CD11c+CD11b+ DCs but not CD11c−CD11b+ macrophages/monocytes. Furthermore, Flt3+M-CSFR+c-kitintlin− cells possessed very poor, if any activity in myeloid colony forming assays, and lacked pre-B cell colony forming activity. In both, lethally and sub-lethally irradiated mice, transferred Flt3+M-CSFR+c-kitintlin− cells differentiated into CD11c+B220+ IPCs, CD11c+CD8α+, and CD11c+CD8α− conventional DC subsets, while no other hematopoietic cells were detectable. In vivo reconstitution and CFSE-labeling experiments showed that Flt3+M-CSFR+c-kitintlin− cells extensively proliferate in the lethally irradiated mice, reaching peak progeny levels of IPC and DC at day 10 after transplantation, indicating high proliferative, but limited self-renewal capacity of these cells. Quantitative RT-PCR analysis revealed high expression of DC and IPC-development affiliated genes (such as PU.1, STAT3, GM-CSFR, and CX3CR1), but no lymphoid- and erythroid-development affiliated gene transcription. These data suggest the existence of common developmental intermediates for both IPCs and DCs in mouse bone marrow, and thus might provide new insights into the regulation of IPC and DC differentiation in steady-state and inflammation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1460-1460
Author(s):  
Laura A Paganessi ◽  
Lydia Luy Tan ◽  
Sucheta Jagan ◽  
Robin Frank ◽  
Antonio M. Jimenez ◽  
...  

Abstract Abstract 1460 Many patients with hematologic malignancies choose hematopoietic stem cell transplantation (HSCT) as a treatment option. The most common source of Hematopoietic Stem and Progenitor Cells (HSC/HPC) for adult recipients is mobilized Peripheral Blood (mobPB). Limited quantities of HSC/HPC obtainable from an umbilical cord restricts its use for adult recipients. Ex vivo treatment of umbilical cord blood (CB) with cytokines and growth factors is being used to expand the population of cord blood HSC/HPCs in hopes of obtaining higher numbers of transplantable CB cells. In addition, cytokines and growth factors are often utilized post-transplant in an attempt to improve the rate of immune reconstitution. It has been previously reported that granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage-colony-stimulating factor (GM-CSF) up-regulate CD26 (dipeptidyl peptidase IV/DPPIV) activity on freshly isolated CD34+ CB cells within 18 hours of culture [Christopherson, et al. Exp Hematol 2006]. Separate studies have demonstrated that treatment of uncultured CD34+ CB cells with the CD26 inhibitor Diprotin A increases transplant efficiency into immunodeficient mice [Christopherson, et al. Stem Cells Dev. 2007]. We evaluated here the in vitro and in vivo effects of CD26 inhibitor treatment on previously frozen CB CD34+ cells cultured ex vivo with G-CSF, GM-CSF or SCF for 48 hours. We examined CD26 expression by multivariate flow cytometry, CD26 activity using the established chromogenic CD26 substrate, Gly-Pro-p-nitroanilide (Gly-Pro-pNA), and SDF-1α induced migration and adhesion. In vivo, we examined long-term engraftment in NSG (NOD/SCID/IL2Rγnull) immunodeficient mice. After 48 hours of culture with cytokine treatment we observed altered CD26 expression on CD34+ CB cells. There was both an increase in the percentage of CD26+ cells and the mean fluorescence intensity (MFI) of CD26. Additionally, CD26 activity was 1.20, 1.59, 1.58, and 1.65 fold greater after ex vivo culture in untreated, G-CSF, GM-CSF and SCF treated CB CD34+ cells respectively compared to the CD26 activity prior to culture. The increase in CD26 activity as a result of treatment with G-CSF (p≤ 0.01), GM-CSF (p≤ 0.05) or SCF (p≤ 0.01) was significantly higher than the CD26 activity measured in the untreated cells following 48 hours of culture. Post-culture treatment with the CD26 inhibitor, Diprotin A, significantly improved SDF-1α induced migration and adhesion of cultured CD34+ CB cells in vitro, particularly in G-CSF treated cells (p≤ 0.05). Diprotin A treatment of CD34+ CB cells previously treated with G-CSF also significantly increased the long-term in vivo engraftment of stem and progenitor (CD34+CD38-, p=0.032), monocyte (CD14+, p=0.015), and megakaryocyte/platelet (CD61+, p=0.020) cells in the bone marrow of NSG mice. CD26 has been previously shown to cleave SDF-1 (stromal cell-derived factor 1/CXCL12). After cleavage, SDF-1 retains its ability to bind to its receptor (CXCR4) but no longer signals. SDF-1 is a powerful chemoattractant and has been shown to be important in mobilization, homing, and engraftment of HSCs and HPCs. This study demonstrates the influence of ex vivo culture and the effect of cytokine treatment on CD26 activity and subsequent biologic function related to HSCT. All three cytokines studied caused a significant increase in enzymatic activity at 48 hours compared to untreated cells. The up-regulation of CD26 protein expression caused by cytokine treatment for 48 hours, in particular G-CSF, had a significant impact on SDF-1 stimulated migration and adhesion. This was demonstrated in vitro by the improvement in cell function after CD26 inhibitor treatment and in vivo by the improved engraftment seen in the G-CSF treated cells with CD26 inhibitor treatment. These experiments suggest that combining CD26 inhibitor treatment following culture with G-CSF treatment during culture has the greatest overall benefit in engraftment outcome. By increasing our understanding of the effects of exogenous cytokines during culture on trafficking, ex vivo expanded CB has the potential to become a more effective means of not only increasing numbers of CB HSC/HPCs but also engraftment outcomes. This would ultimately allow expanded cord blood to become a more viable option for HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3566-3566
Author(s):  
Marco L Davila ◽  
Isabelle Riviere ◽  
Xiuyan Wang ◽  
Jae H. Park ◽  
Jolanta Stefanski ◽  
...  

Abstract Abstract 3566 B cell acute lymphoblastic leukemia (B-ALL) in adults has a dismal prognosis. Intensified, combinatorial chemotherapy yields remarkable results in pediatric ALL but less so in adults. As allogeneic hematopoietic stem cell transplantation (HSCT) is curative in only a minority of patients, there remains a dire need for effective therapies in this patient population. Building on our results obtained with genetically targeted T cells in xenogeneic models of ALL and our experience in patients with chronic lymphocytic leukemia (Brentjens, Rivière, Blood, 2011), we have recently initiated a clinical trial (NCT01044069) treating adults with relapsed or refractory B-ALL with autologous T cells expressing the 19–28z chimeric antigen receptor (CAR), a dual CD3zeta/CD28 signaling receptor specific for the B cell antigen CD19. Human peripheral blood T cells retrovirally transduced to express the 19–28z receptor specifically lyse normal and malignant B cells in vitro and eradicate established tumors in vivo in pre-clinical animal models. We report the results from the initial cohort of patients treated on this protocol. The first two patients had relapsed disease that achieved morphologic remission following re-induction chemotherapy. Following adoptive therapy with CAR-modified T cells, one patient achieved a B cell aplasia and molecular remission documented by deep sequencing, which demonstrated the disappearance of IgH rearrangements associated with the malignant clone. The other patient had achieved a molecular remission after re-induction chemotherapy but further developed a complete B cell aplasia following modified T cell infusion. While in molecular remission, both patients successfully underwent allogeneic HSCT and were therefore removed from the study. In contrast to these two patients, the third patient failed to achieve a morphologic remission after re-induction chemotherapy and had >60% blasts in the bone marrow (BM) at the time of T cell infusion. Within 12 hours of completing T cell infusion, the patient developed high-grade fevers, hypotension, and rigors. Serum analyses demonstrated a sharp rise in cytokines (IFNg, TNFa, IL6, IL2, and IL8), reflecting rapid and robust onset of T cell activation. High-dose corticosteroids initiated 5 days after T cell infusion controlled these symptoms. Post-T cell BM aspirate on day 8 demonstrated undetectable blasts. Flow cytometry could not detect blasts or B lineage cells, but readily identified 19–28z CAR+ T cells. Significantly, the patient's B-ALL tumor cells harbored a unique 9p21 cytogenetic deletion that was detected by FISH in 28% of nuclei immediately prior to T cell infusion and was reduced to 5% 8 days after T cell infusion. The next BM aspirate, performed on day 24 after T cell infusion, demonstrated a persistent morphologic remission, a recovering BM, and complete absence of any detectable 9p21 deletions. Furthermore, PCR amplification for IgH rearrangements in the BM 24 days after T cell infusion confirmed a molecular remission and a B cell aplasia. Collectively, the clinical outcomes from this initial cohort of 3 patients demonstrate for the first time the in vivo efficacy of CD19-targeted T cells to induce clinical and molecular remissions as well as B cell aplasia in adults with relapsed or refractory B-ALL. These early results strongly support further investigation of 19–28z targeted T cells to treat leukemias and suggest this is a potential salvage therapy for patients with relapsed/refractory B-ALL who are failing chemotherapy or are ineligible for allogeneic HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 816-816
Author(s):  
Stephen S. Chung ◽  
Jae H. Park ◽  
Eunhee Kim ◽  
Young Rock Chung ◽  
Wenhuo Hu ◽  
...  

Abstract Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder recently found to be characterized by somatic BRAFV600E mutations. The malignant cell in HCL exhibits features consistent with a mature B-lymphocyte, including cell-surface expression of the pan-B-cell marker CD19 and monotypic surface immunoglobulins with clonal rearrangements of immunoglobulin heavy and light chains. Despite possessing these stereotypic features, the cell of origin of HCL has been long debated, and no cell type along the continuum of developing B-lymphocytes has been definitively identified as the normal counterpart of HCL cells. We hypothesized that HCL may originate from immature hematopoietic cells, and therefore investigated the hematopoietic-stem/progenitor cell (HSPC) compartment in HCL patients. We found that HCL patients exhibited a significantly increased frequency of immunophenotypically defined long-term hematopoietic stem cells (LT-HSCs; lineage-negative (Lin-neg) CD34+CD38-CD90+CD45RA- cells), pro-B cells (Lin-neg CD10+ cells), and CD34-CD38+ CD10+CD19+ hematogones, as well as a decreased frequency of granulocyte-macrophage progenitor cells (Lin-neg CD34+CD38+CD45RA+CD123+) relative to age-matched normal controls. Sequencing of cDNA from highly pure FACS-sorted cell populations from the bone marrow of HCL patients revealed the presence of the BRAFV600E allele in LT-HSCs and in pro-B cells (Figure). Transplantation of LT-HSCs from the pretreatment bone marrow of HCL patients into NOD/SCID/IL2r-gnull mice resulted in stable human grafts characterized by an expanded B-progenitor population and development of a clonal population of hCD19+hCD103+hCD25+ B cells characteristic of HCL 6 months after transplantation. Together, these data suggest that HCL arises from HSCs that then differentiate into committed B-cells which ultimately give rise to the characteristic clonal B-cell proliferation of HCL. Given the human HSC genetic and functional cell data, we conditionally expressed BRafV600E from its endogenous locus at different stages of hematopoiesis, including in HSPCs and committed B cells. Mice with conditional expression of BRafV600E in Mx1Cre+ BRafV600E knock-in mice died of a lethal hematopoietic malignancy characterized by features of human HCL including splenomegaly, anemia, thrombocytopenia, increased circulating sCD25, and increased clonogenic capacity of B-lineage cells (evidenced by infinite serial replating in the presence of IL-7) (Figure). This disorder was transplantable into lethally-irradiated recipient mice. In contrast, mice with expression of BRafV600E restricted to the B-cell lineage with Cd19 Cre manifested no overt malignant phenotype up to one year of age. Stimulation of these mice with alloantigen through injections of sheep red blood cells resulted in germinal center B-cell hyperplasia, but still did not result in development of a clonal B-cell proliferation. Recent case reports have noted that refractory HCL patients respond to mutant BRAF inhibition with vemurafenib. We investigated the effect of vemurafenib on HSPCs and hematopoiesis in patients treated on a phase II study of the mutant BRAF inhibitor vemurafenib for relapsed/refractory HCL as well as in our in vivo murine models. Flow cytometric analysis of bone marrow cells from vemurafenib treated HCL patients revealed normalization of HSPC frequencies within three months of starting therapy, concomitant with an improvement in peripheral blood counts. Consistent with this, evaluation of the in vitro clonogenic capacity of sorted LT-HSC's from the bone marrow of HCL patients revealed a significant increase in myeloid/erythroid colony formation in HCL patients treated for 3 months with vemurafenib compared to their pretreatment marrows. Likewise, treatment of wildtype mice transplanted with Mx1Cre+ BRafV600E mutant bone marrow cells revealed improvement in anemia and hepatosplenomegaly with in vivo therapy. Overall, these findings link the pathogenesis of HCL to a specific somatic genetic abnormality present in HSCs and provide evidence that mature B-cell malignancies can initiate in the HSC compartment. Moreover, these data suggest that the use of therapies targeting MAP kinase signaling in HCL may lead to durable remissions not only by eliminating the mature leukemic cells but also through targeted inhibition of signaling and survival in HCL initiating cells. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Jessica A. Engel ◽  
Hyun Jae Lee ◽  
Cameron G. Williams ◽  
Rachel Kuns ◽  
Stuart Olver ◽  
...  

AbstractAcute gastrointestinal Graft-versus-Host-Disease (GVHD) is a primary determinant of mortality after allogeneic hematopoietic stem-cell transplantation (alloSCT). It is mediated by alloreactive donor CD4+ T cells that differentiate into pathogenic subsets expressing IFNγ, IL-17A or GM-CSF, and is regulated by subsets expressing IL-10 and/or Foxp3. Developmental relationships between T-helper states during priming in mesenteric lymph nodes (mLN) and effector function in the GI tract remain undefined at genome-scale. We used scRNA-seq and computational modelling to create an atlas of putative differentiation pathways during GVHD. Computational trajectory inference suggested emergence of pathogenic and regulatory states along a single developmental trajectory in mLN. Importantly, we identified an unexpected second trajectory, categorised by little proliferation or cytokine expression, reduced glycolysis, and high TCF1 expression. TCF1hi cells upregulated α4β7 prior to gut migration and failed to express cytokines therein. Nevertheless, they demonstrated recall potential and plasticity following secondary transplantation, including cytokine or Foxp3 expression, but reduced TCF1. Thus, scRNA-seq revealed divergence of allo-reactive CD4+ T cells into quiescent and effector states during gut GVHD, reflecting putative heterogenous priming in vivo. These findings, the first at a single-cell level during GVHD over time, can now be used to interrogate T cell differentiation in patients undergoing alloSCT.


Author(s):  
Muhammad Ali ◽  
Eirini Giannakopoulou ◽  
Yingqian Li ◽  
Madeleine Lehander ◽  
Stina Virding Culleton ◽  
...  

AbstractUnlike chimeric antigen receptors, T-cell receptors (TCRs) can recognize intracellular targets presented on human leukocyte antigen (HLA) molecules. Here we demonstrate that T cells expressing TCRs specific for peptides from the intracellular lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT), presented in the context of HLA-A*02:01, specifically eliminate primary acute lymphoblastic leukemia (ALL) cells of T- and B-cell origin in vitro and in three mouse models of disseminated B-ALL. By contrast, the treatment spares normal peripheral T- and B-cell repertoires and normal myeloid cells in vitro, and in vivo in humanized mice. TdT is an attractive cancer target as it is highly and homogeneously expressed in 80–94% of B- and T-ALLs, but only transiently expressed during normal lymphoid differentiation, limiting on-target toxicity of TdT-specific T cells. TCR-modified T cells targeting TdT may be a promising immunotherapy for B-ALL and T-ALL that preserves normal lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document