scholarly journals Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1074
Author(s):  
Kristine Stromsnes ◽  
Rudite Lagzdina ◽  
Gloria Olaso-Gonzalez ◽  
Lucia Gimeno-Mallench ◽  
Juan Gambini

Drugs are bioactive compounds originally discovered from chemical structures present in both the plant and animal kingdoms. These have the ability to interact with molecules found in our body, blocking them, activating them, or increasing or decreasing their levels. Their actions have allowed us to cure diseases and improve our state of health, which has led us to increase the longevity of our species. Among the molecules with pharmacological activity produced by plants are the polyphenols. These, due to their molecular structure, as drugs, also have the ability to interact with molecules in our body, presenting various pharmacological properties. In addition, these compounds are found in multiple foods in our diet. In this review, we focused on discussing the bioavailability of these compounds when we ingested them through diet and the specific mechanisms of action of polyphenols, focusing on studies carried out in vitro, in animals and in humans over the last five years. Knowing which foods have these pharmacological activities could allow us to prevent and aid as concomitant treatment against various pathologies.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
J. Gambini ◽  
M. Inglés ◽  
G. Olaso ◽  
R. Lopez-Grueso ◽  
V. Bonet-Costa ◽  
...  

Plants containing resveratrol have been used effectively in traditional medicine for over 2000 years. It can be found in some plants, fruits, and derivatives, such as red wine. Therefore, it can be administered by either consuming these natural products or intaking nutraceutical pills. Resveratrol exhibits a wide range of beneficial properties, and this may be due to its molecular structure, which endow resveratrol with the ability to bind to many biomolecules. Among these properties its activity as an anticancer agent, a platelet antiaggregation agent, and an antioxidant, as well as its antiaging, antifrailty, anti-inflammatory, antiallergenic, and so forth activities, is worth highlighting. These beneficial biological properties have been extensively studied in humans and animal models, bothin vitroandin vivo. The issue of bioavailability of resveratrol is of paramount importance and is determined by its rapid elimination and the fact that its absorption is highly effective, but the first hepatic step leaves little free resveratrol. Clarifying aspects like stability and pharmacokinetics of resveratrol metabolites would be fundamental to understand and apply the therapeutic properties of resveratrol.


Author(s):  
Evandro Manoel Neto-Neves ◽  
Carlos da Silva Maia Bezerra Filho ◽  
Naiara Naiana Dejani ◽  
Damião Pergentino de Sousa

: Bioactive compounds found in food and medicinal plants contribute to maintaining health and treating illnesses. For example, hydroxycinnamic acids, such as ferulic acid, are widely present in nature and have several pharmacological properties, including antioxidant, anti-inflammatory, and beneficial effects in parameters of diabetes and hyperlipidemia. In fact, the results of studies in animal models and in vitro experiments of ferulic acid suggest its high therapeutic and preventive potential against several pathological disorders, such as cardiovascular diseases. Therefore, in this review, the bioactivities of ferulic acid on the cardiovascular system are described, including the discussion of the mechanisms of action in the various components of the system. In this review, we discuss the pharmacological properties of this versatile natural product in aspects of cardiovascular health, including cardioprotective and antihypertensive actions, and on the metabolism of lipids, diabetes, and thrombosis.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 610
Author(s):  
Junjie Yan ◽  
Weiwei Liu ◽  
Jiatong Cai ◽  
Yiming Wang ◽  
Dahong Li ◽  
...  

Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.


Author(s):  
Anuradha Singh

Curcumin, the polyphenol natural product, is a constituent of the traditional medicine known as turmeric. Extensive research over the last 50 years has indicated that this polyphenol displays potent pharmacological effects by targeting many critical cellular factors through a diverse array of mechanisms of action. However, there are some obstacles that prevent this wonder molecule to be effective in clinical settings and limit its use to topical applications only. Curcumin has recently been classified as both PAINS (panassay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. Due to likely false activity of curcumin in vitro and in vivo has resulted unsuccessful clinical trial of curcumin against several disease. The chapter will review the essential medicinal chemistry of curcumin as well as envisage a compilation and discussion on the poor bioavailability of curcumin.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 595 ◽  
Author(s):  
Benyin Zhang ◽  
Xiaona Jin ◽  
Hengxia Yin ◽  
Dejun Zhang ◽  
Huakun Zhou ◽  
...  

Medicinal plants have been known as a rich source of natural products (NPs). Due to their diverse chemical structures and remarkable pharmacological activities, NPs are regarded as important repertoires for drug discovery and development. Biebersteinia plant species belong to the Biebersteiniaceae family, and have been used in folk medicines in China and Iran for ages. However, the chemical properties, bioactivities and modes of action of the NPs produced by medicinal Biebersteinia species are poorly understood despite the fact that there are only four known Biebersteinia species worldwide. Here, we reviewed the chemical classifications and diversity of the various NPs found in the four known Biebersteinia species. We found that the major chemical categories in these plants include flavonoids, alkaloids, phenylpropanoids, terpenoids, essential oils and fatty acids. We also discussed the anti-inflammatory, analgesic, antibacterial, antioxidant, antihypertensive and hypoglycemic effects of the four Biebersteinia species. We believe that the present review will facilitate the exploration of traditional uses and pharmacological properties of Biebersteinia species, extraction of the NPs and elucidation of their molecular mechanisms, as well as the development of novel drugs based on the reported properties and mode-of-action.


2016 ◽  
Vol 11 (7) ◽  
pp. 1934578X1601100
Author(s):  
Chun-Tao Che ◽  
Ming Zhao ◽  
Brian Guo ◽  
Michael M. Onakpa

This is a review on the pharmacological properties and chemical composition of Icacina trichantha (Icacinaceae), a food and medicinal plant native to West Africa. The tuber is a good source of nutrients such as starch; it also exhibits a variety of pharmacological activities in animal models. Chemical analysis has revealed the presence of a series of unusual pimarane-type diterpenes.


2018 ◽  
Vol 26 (2) ◽  
pp. 181-206
Author(s):  
Gul E Mehak ◽  
Akhlaq Ahmad Bhatti

Abstract A large number of drug experiments revealed that there exists strong inherent relation between the drugs molecular structures and the bio-medical and pharmacology characteristics. Due to the effectiveness for pharmaceutical and medical scientists of their ability to grasp the biological and chemical characteristics of new drugs, forgotten topological index was defined to analyze the drug molecular structures. This index is applicable for testing the chemical and pharmacological properties of drug molecular structures that can make up for lack of chemical experiments and can provide a theoretical basis for the manufacturing of drugs which is widely welcomed in developing areas. In this paper, based on the drug molecular structure analysis and vertex dividing technique with respect to their degrees, we present the forgotten topological index of the line graphs of several popular chemical structures which is quite common in drug molecular graphs.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1238 ◽  
Author(s):  
Vera Petricevich ◽  
Rodolfo Abarca-Vargas

In this work, we explore the current knowledge about the phytochemistry and in vitro and in vivo evaluations of the extracts and, where appropriate, the main active components characterized and isolated from the Allamanda cathartica. Of the 15 Allamanda species, most phytochemical, pharmacological, and toxicological studies have focused on A. cathartica. These plants are used for the treatment of various health disorders. Numerous phytochemical investigations of plants from the A. cathartica have shown the presence of hydrocarbons, alcohols, esters, ethers, aldehydes, ketones, fatty acids, phospholipids, volatile compounds, phenolic compounds, flavonoids, alkaloids, steroids, terpenes, lactones, and carbohydrates. Various studies have confirmed that extracts and active substances isolated from the A. cathartica have multiple pharmacological activities. The species A. cathartica has emerged as a source of traditional medicine used for human health. Further studies on the phytochemical, pharmacological, and toxicological properties and their mechanisms of action, safety, and efficacy in the species of A. cathartica is recommended.


Author(s):  
Kumar Piyush ◽  
Singh Kuldeep ◽  
Rahman Md. Azizur ◽  
Hasan Syed Misbahul ◽  
Wal Pranay

One of the naturally occurring compounds containing oxygen moiety is benzopyran. Depending on its substitution pattern, different biological effects are shown. The benzopyran ring system is present in many natural products (such as genistein, hesperidin, and warfarin) as well as synthetic products. It displays pharmacological properties such as antitumor, anti-HIV, antimicrobials, anti-inflammatory, and anticoagulants. The sufficient literature support and the fact that benzopyran has potential as a pharmacophore particularly as anti-breast cancer, etc, current research seemed pertinent keeping in view the mechanism of anti-breast cancer activity. Therefore, the objective of this review is to focus on important benzopyran analogs with anti-breast cancer activity and highlight their mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document