scholarly journals The Cholinergic Anti-Inflammatory Pathway Attenuates the Development of Atherosclerosis in Apoe-/- Mice through Modulating Macrophage Functions

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1150
Author(s):  
Zhengjiang Qian ◽  
Haiyang Yang ◽  
Hongchao Li ◽  
Chunhua Liu ◽  
Liang Yang ◽  
...  

(1) Background: The cholinergic anti-inflammatory pathway (CAP) has been implicated in the regulation of various diseases, including chronic inflammatory cardiovascular disorders such as atherosclerosis (AS). This study aims to explore the underlying regulatory mechanisms of CAP activity in the progression of AS. (2) Methods: The Apoe-/- mice were subjected to sham, bilateral cervical vagotomy surgery (VGX), and VGX supplemented with Gainesville Tokushima scientists (GTS)-21 (4 mg/kg/d) and then fed with a high-fat diet for 10 weeks. Atherosclerotic lesion size and inflammation levels were investigated by histology and inflammatory cytokines analysis. The blood M1/M2 macrophages were analyzed by flow cytometry. Primary mouse bone marrow-derived macrophages (BMDM), peritoneal macrophages, and RAW264.7 cells were treated with CAP agonists acetylcholine (Ach) and GTS-21 to study their effects on macrophage functions. (3) Results: Compared with the sham group, inhibition of CAP by the VGX resulted in growing aortic lipid plaque area, deteriorated inflammatory levels, and aberrant quantity of M1/M2 macrophages in Apoe-/- mice. However, these detrimental effects of VGX were significantly ameliorated by the reactivation of CAP through GTS-21 treatment. The in vitro study using macrophages revealed that stimulation with CAP agonists suppressed M1, but promoted M2 macrophage polarization through the upregulation of TNFAIP3 and phosphorylation STAT3 levels, respectively. Moreover, the activation of CAP inhibited the formation of macrophage foam cells in the peritoneal cavity by regulating genes related to cholesterol metabolism. (4) Conclusions: This study provides novel evidence and mechanisms that the CAP plays an important role in the regulation of AS development by controlling macrophage functions, implying a potential use of CAP activation as a therapeutic strategy for AS treatment.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi259-vi259
Author(s):  
Lili Chen ◽  
Ming Li

Abstract Guanylate binding protein 1 (GBP1) is an interferon-inducible large GTPase which plays a key role in tumor development, but the molecular mechanism is poorly understood. Here we investigated whether GBP1 could influence the tumor microenvironment in glioblastoma, the most common and malignant brain tumor. We found that forced expression of GBP1 in glioblastoma cells induced macrophage polarization toward an M2 phenotype via upregulating Chemokine (C-C motif) ligand 2 (CCL2). CCL2 acted via its receptor C-C chemokine receptor 2 (CCR2) to enhance macrophage cell migration in vitro. The M2 macrophages in turn promoted glioblastoma cell proliferation and migration. The orthotopic mouse model showed that GBP1 recruited M2 macrophages into tumor to promote glioblastoma progression, and targeting CCL2/CCR2 signaling axis with a small molecule inhibitor RS504393 led to decreased macrophage attraction and M2 polarization and a significant tumor growth retardation and prolonged survival of tumor-bearing mice. Clinically, GBP1 expression positively correlated with M2 macrophage numbers and CCL2 expression in glioblastoma. Taken together, our results reveal that GBP1 modulates the tumor immune microenvironment through CCL2 induction to promote glioblastoma infiltrating growth, and targeting tumor-associated macrophages may represent a new therapeutic strategy against glioblastoma.


2020 ◽  
Vol 40 (9) ◽  
pp. 2070-2083
Author(s):  
Lin-Lin Wei ◽  
Ning Ma ◽  
Kun-Yi Wu ◽  
Jia-Xing Wang ◽  
Teng-Yue Diao ◽  
...  

Objective: Emerging evidence suggests that C3aR (C3a anaphylatoxin receptor) signaling has protective roles in various inflammatory-related diseases. However, its role in atherosclerosis has been unknown. The purpose of the study was to investigate the possible protective role of C3aR in aortic atherosclerosis and explore molecular and cellular mechanisms involved in the protection. Approach and Results: C3ar −/− /Apoe −/− mice were generated by cross-breeding of atherosclerosis-prone Apoe −/− mice and C3ar −/− mice. C3ar −/− /Apoe −/− mice and Apoe −/− mice (as a control) underwent high-fat diet for 16 weeks were assessed for (1) atherosclerotic plaque burden, (2) aortic tissue inflammation, (3) recruitment of CD11b + leukocytes into atherosclerotic lesions, and (4) systemic inflammatory responses. Compared with Apoe −/− mice, C3ar −/− /Apoe −/− mice developed more severe atherosclerosis. In addition, C3ar −/− /Apoe −/− mice have increased local production of proinflammatory mediators (eg, CCL2 [chemokine (C-C motif) ligand 2], TNF [tumor necrosis factor]-α) and infiltration of monocyte/macrophage in aortic tissue, and their lesional macrophages displayed an M1-like phenotype. Local pathological changes were associated with enhanced systemic inflammatory responses (ie, elevated plasma levels of CCL2 and TNF-α, increased circulating inflammatory cells). In vitro analyses using peritoneal macrophages showed that C3a stimulation resulted in upregulation of M2-associated signaling and molecules, but suppression of M1-associated signaling and molecules, supporting the roles of C3a/C3aR axis in mediating anti-inflammatory response and promoting M2 macrophage polarization. Conclusions: Our findings demonstrate a protective role for C3aR in the development of atherosclerosis and suggest that C3aR confers the protection through C3a/C3aR axis–mediated negative regulation of proinflammatory responses and modulation of macrophage toward the anti-inflammatory phenotype.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yohei Kawai ◽  
Yuji Narita ◽  
Aika Yamawaki-Ogata ◽  
Akihiko Usui ◽  
Kimihiro Komori

Background. The pathogenesis of abdominal aortic aneurysm (AAA) is characterized by atherosclerosis with chronic inflammation in the aortic wall. Montelukast is a selective cys-LT 1 receptor antagonist that can suppress atherosclerotic diseases. We evaluated the in vitro properties of montelukast and its in vivo activities in an angiotensin II–infused apolipoprotein E–deficient (apoE−/−) AAA mouse model. Methods. The mouse monocyte/macrophage cell line J774A.1 was used in vitro. M1 macrophages were treated with montelukast, and gene expressions of inflammatory cytokines were measured. Macrophages were cultured with montelukast, then gene expressions of arginase-1 and IL (interleukin)-10 were assessed by quantitative polymerase chain reaction, arginase-1 was measured by fluorescence-activated cell sorting, and IL-10 concentration was analyzed by enzyme-linked immunosorbent assay. In vivo, one group (Mont, n=7) received oral montelukast (10 mg/kg/day) for 28 days, and the other group (Saline, n=7) was given normal Saline as a control for the same period. Aortic diameters, activities of matrix metalloproteinases (MMPs), cytokine concentrations, and the number of M2 macrophages were analyzed. Results. Relative to control, montelukast significantly suppressed gene expressions of MMP-2, MMP-9, and IL-1β, induced gene expressions of arginase-1 and IL-10, enhanced the expression of the arginase-1 cell surface protein, and increased the protein concentration of IL-10. In vivo, montelukast significantly decreased aortic expansion (Saline vs Mont; 2.44 ± 0.15 mm vs 1.59 ± 0.20 mm, P<.01), reduced MMP-2 activity (Saline vs Mont; 1240 μM vs 755 μM, P<.05), and induced infiltration of M2 macrophages (Saline vs Mont; 7.51 % vs 14.7 %, P<.05). Conclusion. Montelukast induces M2 macrophage polarization and prevents AAA formation in apoE−/− mice.


2019 ◽  
Vol 25 (30) ◽  
pp. 3225-3238 ◽  
Author(s):  
Amirhossein Davoodvandi ◽  
Roxana Sahebnasagh ◽  
Omid Mardanshah ◽  
Zatollah Asemi ◽  
Majid Nejati ◽  
...  

Macrophages are one of the crucial mediators of the immune response in different physiological and pathological conditions. These cells have critical functions in the inflammation mechanisms that are involved in the inhibition or progression of a wide range of diseases including cancer, autoimmune diseases, etc. It has been shown that macrophages are generally divided into two subtypes, M1 and M2, which are distinguished on the basis of their different gene expression patterns and phenotype. M1 macrophages are known as pro-inflammatory cells and are involved in inflammatory mechanisms, whereas M2 macrophages are known as anti-inflammatory cells that are involved in the inhibition of the inflammatory pathways. M2 macrophages help in tissue healing via producing anti-inflammatory cytokines. Increasing evidence indicated that the appearance of different macrophage subtypes is associated with the fate of diseases (progression versus suppression). Hence, polarization of macrophages can be introduced as an important venue in finding, designing and developing novel therapeutic approaches. Albeit, there are different pharmacological agents that are used for the treatment of various disorders, it has been shown that several natural compounds have the potential to regulate M1 to M2 macrophage polarization and vice versa. Herein, for the first time, we summarized new insights into the pharmacological effects of natural compounds on macrophage polarization.


2021 ◽  
Author(s):  
Xinyun Han ◽  
Junxian Hu ◽  
Wenbo Zhao ◽  
Hongwei Lu ◽  
Jingjin Dai ◽  
...  

Abstract Angiogenesis is essential for successful bone defect repair. In normal tissue repair, the physiological inflammatory response is the main regulator of angiogenesis through the activity of macrophages and the cytokines secreted by them. In particular, M2 macrophages which secrete high levels of PDGF-BB are typically considered to promote angiogenesis. A hexapeptide [WKYMVm, (Trp-Lys-Tyr-Met-Val-D-Met-NH2)] has been reported to modulate inflammatory activities. However, the underlying mechanisms by which WKYMVm regulates macrophages remain unclear. In this study, the possible involvement by which WKYMVm induces the polarization of macrophages and affects their behaviors was evaluated. In vitro results showed that macrophages were induced to an M2 rather than M1 phenotype and the M2 phenotype was enhanced by WKYMVm through activation of the JAK1/STAT6 signaling pathway. It was also found that WKYMVm played an important role in the PDGF-BB production increase and proangiogenic abilities in M2 macrophages. Consistent with the results in vitro, the elevated M2/M0 ratio induced by WKYMVm enhanced the formation of new blood vessels in a femoral defect mouse model. In summary, these findings suggest that WKYMVm could be a promising alternative strategy for angiogenesis in bone repair by inducing M2 macrophage polarization.


OTO Open ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 2473974X2110591
Author(s):  
Eric Nisenbaum ◽  
Carly Misztal ◽  
Mikhaylo Szczupak ◽  
Torin Thielhelm ◽  
Stefanie Peña ◽  
...  

Objective (1) Characterize the distribution of M1 and M2 macrophages in vestibular schwannomas by hearing status. (2) Develop assays to assess monocyte migration and macrophage polarization in cocultures with vestibular schwannoma cells. Study Design Basic and translational science. Setting Tertiary care center. Methods A retrospective chart review of 30 patients with vestibular schwannoma (VS) was performed. Patients were stratified into serviceable and unserviceable hearing groups. Immunohistochemistry for CD80+ M1 and CD163+ M2 macrophages was conducted. Primary VS cultures (n = 4) were developed and cocultured with monocytes. Immunohistochemistry for macrophage markers was performed to assess monocyte migration and macrophage polarization. Results Although tumors associated with unserviceable hearing had higher levels of CD80 and CD163 than those with serviceable hearing, the relationship was only significant with CD163 ( P = .0161). However, CD163 level did not remain a significant predictor variable associated with unserviceable hearing on multivariate analysis when adjusted for other variables. In vitro assays show that VS cells induced monocyte migration and polarization toward CD80+ M1 or CD163+ M2 macrophage phenotypes, with qualitative differences in CD163+ macrophage morphologies between serviceable and unserviceable hearing groups. Conclusion Vestibular schwannomas express varying degrees of CD80+ M1 and CD163+ M2 macrophages. We present evidence that higher expression of CD163+ may contribute to poorer hearing outcomes in patients with VS. We also describe in vitro assays in a proof-of-concept investigation that VS cells can initiate monocyte migration and macrophage polarization. Future investigations are warranted to explore the relationships between tumor, macrophages, secreted cytokines, and hearing outcomes in patients with VS.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shaoxi Yan ◽  
Mo Zhou ◽  
Xiaoyun Zheng ◽  
Yuanyuan Xing ◽  
Juan Dong ◽  
...  

Inflammation causes tissue damage and promotes ventricular remodeling after myocardial infarction (MI), and the infiltration and polarization of macrophages play an important role in regulating inflammation post-MI. Here, we investigated the anti-inflammatory function of curcumin after MI and studied its relationship with macrophage polarization. In vivo, curcumin not only attenuated ventricular remodeling 3 months after MI but also suppressed inflammation during the first 7 days post-MI. Importantly, the results of qPCR and immunochemistry showed that curcumin decreased M1 (iNOS, CCL2, and CD86) but increased M2 macrophage (Arg1, CD163, and CD206) marker expression in the myocardium of MI mice during the first 7 days post-MI. And flow cytometry analysis indicated that curcumin suppressed M1 (CD45+Gr-1-CD11b+iNOS+ cells) but enhanced M2 macrophage (CD45+Gr-1-CD11b+Arg+ cells) expansion in the myocardium of MI mice during the first 7 days post-MI. In vitro, curcumin decreased LPS/IFNγ-elevated M1 macrophage marker (iNOS and CD86) expression and the proportion of M1 macrophages (iNOS+F4/80+ cells) but increased LPS/IFNγ-suppressed M2 macrophage marker (Arg1 and CD206) expression and the proportion of M2 macrophages (Arg1+F4/80+ cells). In addition, curcumin modulates M1/M2 macrophage polarization partly via AMPK. In conclusion, curcumin suppressed the MI-induced inflammation by modulating macrophage polarization partly via the AMPK pathway.


2021 ◽  
Author(s):  
Xinyun Han ◽  
Junxian Hu ◽  
Wenbo Zhao ◽  
Hongwei Lu ◽  
Jingjin Dai ◽  
...  

Angiogenesis is essential for successful bone defect repair. In normal tissue repair, the physiological inflammatory response is the main regulator of angiogenesis through the activity of macrophages and the cytokines secreted by them. In particular, M2 macrophages which secrete high levels of PDGF-BB are typically considered to promote angiogenesis. A hexapeptide [WKYMVm, (Trp-Lys-Tyr-Met-Val-D-Met-NH2)] has been reported to modulate inflammatory activities. However, the underlying mechanisms by which WKYMVm regulates macrophages remain unclear. In this study, the possible involvement by which WKYMVm induces the polarization of macrophages and affects their behaviors was evaluated. In vitro results showed that macrophages were induced to an M2 rather than M1 phenotype and the M2 phenotype was enhanced by WKYMVm through activation of the JAK1/STAT6 signaling pathway. It was also found that WKYMVm played an important role in the PDGF-BB production increase and proangiogenic abilities in M2 macrophages. Consistent with the results in vitro, the elevated M2/M0 ratio induced by WKYMVm enhanced the formation of new blood vessels in a femoral defect mouse model. In summary, these findings suggest that WKYMVm could be a promising alternative strategy for angiogenesis in bone repair by inducing M2 macrophage polarization.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Luting Zeng ◽  
Yingqin Liu ◽  
Congcong Xing ◽  
Yijie Huang ◽  
Xin Sun ◽  
...  

Atopic dermatitis (AD) is a relapsing, acute, and chronic skin disease featured by intractable itching, eczematous skin. Conventional therapies based on immunosuppression such as corticosteroids are associated with multiple adverse reactions. Periploca forrestii Schltr saponin (PFS) was shown to potently inhibit murine arthritis by protecting bone and cartilage injury and suppressing NF-κB activation. However, its therapeutic effect on oxazolone-induced atopic dermatitis (AD) and the underlying mechanisms on macrophage are still unclear. The AD-like dermatitis was induced by repeated oxazolone challenge to the skin of BALB/c mice in vivo. Blood and ears were biochemically or histologically processed. RT-PCR, western blotting, and ELISA were conducted to evaluate the expression of macrophage factors. Mouse bone marrow-derived macrophages (BMDMs) stimulated with lipopolysaccharide (LPS) were used as a model in vitro. PFS treatment inhibited AD-like dermatitis development. PFS downregulated epidermis thickness and cell infiltration, with histological analysis of the skin lesion. PFS alleviated plasma immunoglobulin (Ig) E, IgG2a, and IgG1 levels. PFS downregulated the expression of M1 macrophage factors, tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, monocyte chemotactic protein-1 (MCP-1), and nitric oxide synthase2 (NOS2), and M2 macrophage factors, IL-4, arginase1 (Arg1) and CD163 in AD-like skin, which were confirmed by western blot and ELISA analysis. In addition, PFS inhibited LPS-induced macrophage polarization via the inhibition of the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and nuclear translocation of NF-κB p65. These results suggest that PFS exerted an antidermatitis effect against oxazolone by modulating macrophage activation. PFS administration might be useful in the treatment of AD and inflammatory skin diseases.


2021 ◽  
Vol 22 (6) ◽  
pp. 3188
Author(s):  
Minwoo Hong ◽  
Ik-Hwan Han ◽  
Ilseob Choi ◽  
Nari Cha ◽  
Woojin Kim ◽  
...  

Cachexia causes high mortality, low quality of life, and rapid weight loss in cancer patients. Sarcopenia, a condition characterized by the loss of muscle, is generally present in cachexia and is associated with inflammation. M2 macrophages, also known as an anti-inflammatory or alternatively activated macrophages, have been shown to play a role in muscle repair. Magnoliae Cortex (M.C) is a widely used medicinal herb in East Asia reported to have a broad range of anti-inflammatory activities; however, the effects of M.C on sarcopenia and on M2 macrophage polarization have to date not been studied. This study was designed to investigate whether the oral administration of M.C could decrease cisplatin-induced sarcopenia by modulating M2 macrophage polarization in mice. C57BL/6 mice were injected intraperitoneally with cisplatin (2.5 mg/kg) to mimic chemotherapy-induced sarcopenia. M.C extract (50, 100, and 200 mg/kg) was administered orally every 3 days (for a total of 12 times). M.C (100 and 200 mg/kg) significantly alleviated the cisplatin-induced loss of body mass, skeletal muscle weight, and grip strength. In addition, M.C increased the expression of M2 macrophage markers, such as MRC1, CD163, TGF-β, and Arg-1, and decreased the expression of M1-specific markers, including NOS2 and TNF-α, in skeletal muscle. Furthermore, the levels of like growth factor-1(IGF-1), as well as the number of M2a and M2c macrophages, significantly increased in skeletal muscle after M.C administration. M.C did not interfere with the anticancer effect of cisplatin in colon cancer. Our results demonstrated that M.C can alleviate cisplatin-induced sarcopenia by increasing the number of M2 macrophages. Therefore, our findings suggest that M.C could be used as an effective therapeutic agent to reverse or prevent cisplatin-induced sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document