scholarly journals Artificial Intelligence Identifies an Urgent Need for Peripheral Vascular Intervention by Multiplexing Standard Clinical Parameters

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1456
Author(s):  
Kristina Sonnenschein ◽  
Stevan D. Stojanović ◽  
Nicholas Dickel ◽  
Jan Fiedler ◽  
Johann Bauersachs ◽  
...  

Background: Peripheral artery disease (PAD) is a significant burden, particularly among patients with severe disease requiring invasive treatment. We applied a general Machine Learning (ML) workflow and investigated if a multi-dimensional marker set of standard clinical parameters can identify patients in need of vascular intervention without specialized intra–hospital diagnostics. Methods: This is a retrospective study involving patients with stable PAD (sPAD, Fontaine Class I and II, n = 38) and unstable PAD (unPAD, Fontaine Class III and IV, n = 18) in need of invasive therapeutic measures. ML algorithms such as Random Forest were utilized to evaluate a matrix consisting of multiple routinely clinically available parameters (age, complete blood count, inflammation, lipid, iron metabolism). Results: ML has enabled a generation of an Artificial Intelligence (AI) PAD score (AI-PAD) that successfully divided sPAD from unPAD patients (high AI-PAD in sPAD, low AI-PAD in unPAD, cutoff at 50 AI-PAD units). Furthermore, the probability score positively coincided with gold-standard intra-hospital mean ankle-brachial index (ABI). Conclusion: AI-based tools may be promising to enable the correct identification of patients with unstable PAD by using existing clinical information, thus supplementing clinical decision making. Additional studies in larger prospective cohorts are necessary to determine the usefulness of this approach in comparison to standard diagnostic measures.

VASA ◽  
2019 ◽  
Vol 48 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Christian-Alexander Behrendt ◽  
Tilo Kölbel ◽  
Thea Schwaneberg ◽  
Holger Diener ◽  
Ralf Hohnhold ◽  
...  

Abstract. Background: Worldwide prevalence of peripheral artery disease (PAD) is increasing and peripheral vascular intervention (PVI) has become the primary invasive treatment. There is evidence that multidisciplinary team decision-making (MTD) has an impact on in-hospital outcomes. This study aims to depict practice patterns and time changes regarding MTD of different medical specialties. Methods: This is a retrospective cross-sectional study design. 20,748 invasive, percutaneous PVI of PAD conducted in the metropolitan area of Hamburg (Germany) were consecutively collected between January 2004 and December 2014. Results: MTD prior to PVI was associated with lower odds of early unsuccessful termination of the procedures (Odds Ratio 0.662, p < 0.001). The proportion of MTD decreased over the study period (30.9 % until 2009 vs. 16.6 % from 2010, p < 0.001) while rates of critical limb-threatening ischemia (34.5 % vs. 42.1 %), patients´ age (70 vs. 72 years), PVI below-the-knee (BTK) (13.2 % vs. 22.4 %), and rates of severe TASC C/D lesions BTK (43.2 % vs. 54.2 %) increased (all p < 0.001). Utilization of MTD was different between medical specialties with lowest frequency in procedures performed by internists when compared to other medical specialties (7.1 % vs. 25.7 %, p < 0.001). Conclusions: MTD prior to PVI is associated with technical success of the procedure. Nonetheless, rates of MTD prior to PVI are decreasing during the study period. Future studies should address the impact of multidisciplinary vascular teams on long-term outcomes.


2020 ◽  
Vol 28 ◽  
Author(s):  
Valeria Visco ◽  
Germano Junior Ferruzzi ◽  
Federico Nicastro ◽  
Nicola Virtuoso ◽  
Albino Carrizzo ◽  
...  

Background: In the real world, medical practice is changing hand in hand with the development of new Artificial Intelligence (AI) systems and problems from different areas have been successfully solved using AI algorithms. Specifically, the use of AI techniques in setting up or building precision medicine is significant in terms of the accuracy of disease discovery and tailored treatment. Moreover, with the use of technology, clinical personnel can deliver a very much efficient healthcare service. Objective: This article reviews AI state-of-the-art in cardiovascular disease management, focusing on diagnostic and therapeutic improvements. Methods: To that end, we conducted a detailed PubMed search on AI application from distinct areas of cardiology: heart failure, arterial hypertension, atrial fibrillation, syncope and cardiovascular rehabilitation. Particularly, to assess the impact of these technologies in clinical decision-making, this research considers technical and medical aspects. Results: On one hand, some devices in heart failure, atrial fibrillation and cardiac rehabilitation represent an inexpensive, not invasive or not very invasive approach to long-term surveillance and management in these areas. On the other hand, the availability of large datasets (big data) is a useful tool to predict the development and outcome of many cardiovascular diseases. In summary, with this new guided therapy, the physician can supply prompt, individualised, and tailored treatment and the patients feel safe as they are continuously monitored, with a significant psychological effect. Conclusion: Soon, tailored patient care via telemonitoring can improve the clinical practice because AI-based systems support cardiologists in daily medical activities, improving disease detection and treatment. However, the physician-patient relationship remains a pivotal step.


2020 ◽  
Author(s):  
Avishek Choudhury

UNSTRUCTURED Objective: The potential benefits of artificial intelligence based decision support system (AI-DSS) from a theoretical perspective are well documented and perceived by researchers but there is a lack of evidence showing its influence on routine clinical practice and how its perceived by care providers. Since the effectiveness of AI systems depends on data quality, implementation, and interpretation. The purpose of this literature review is to analyze the effectiveness of AI-DSS in clinical setting and understand its influence on clinician’s decision making outcome. Materials and Methods: This review protocol follows the Preferred Reporting Items for Systematic Reviews and Meta- Analyses reporting guidelines. Literature will be identified using a multi-database search strategy developed in consultation with a librarian. The proposed screening process consists of a title and abstract scan, followed by a full-text review by two reviewers to determine the eligibility of articles. Studies outlining application of AI based decision support system in a clinical setting and its impact on clinician’s decision making, will be included. A tabular synthesis of the general study details will be provided, as well as a narrative synthesis of the extracted data, organised into themes. Studies solely reporting AI accuracy an but not implemented in a clinical setting to measure its influence on clinical decision making were excluded from further review. Results: We identified 8 eligible studies that implemented AI-DSS in a clinical setting to facilitate decisions concerning prostate cancer, post traumatic stress disorder, cardiac ailment, back pain, and others. Five (62.50%) out of 8 studies reported positive outcome of AI-DSS. Conclusion: The systematic review indicated that AI-enabled decision support systems, when implemented in a clinical setting and used by clinicians might not ensure enhanced decision making. However, there are very limited studies to confirm the claim that AI based decision support system can uplift clinicians decision making abilities.


Author(s):  
Rohit Jain ◽  
Arun Gopal ◽  
Basant Kumar Pathak ◽  
Sourya Sourabh Mohakuda ◽  
TVSVGK Tilak ◽  
...  

Abstract Context Due to the wide spectrum of clinical illness in coronavirus disease 2019 (COVID-19) patients, it is important to stratify patients into severe and nonsevere categories. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have been evaluated rapidly by a few studies worldwide for its association with severe disease, but practically none have been conducted in the Indian population. This study was undertaken to examine the role of NLR and PLR in predicting severe disease in Indian patients. Objectives The objective was to study the association of NLR and PLR observed at the time of admission with maximum disease severity during hospitalization and to study their role in predicting disease severity. Material and Methods A total of 229 COVID-19 patients were admitted at the center during the study period. After applying inclusion and exclusion criteria, 191 patients were included in the study. The demographic, clinical, and laboratory (complete blood count, NLR, and PLR) data of all patients were obtained at the time of admission. Maximum disease severity of all patients was assessed during hospitalization. Statistical Analysis Chi-square and Mann–Whitney U tests were used to assess statistical significance. Receiver operating characteristic curve (ROC) was plotted for NLR and PLR to estimate the cutoff values and sensitivity and specificity using Youden’s index for predicting severe disease. Logistic regression analysis was used to estimate the odds ratios (OR) and 95% confidence intervals. Results Mean NLR and PLR were significantly higher in severe patients (NLR = 7.41; PLR = 204) compared with nonsevere patients (NLR = 3.30; PLR = 121). ROC analysis showed that NLR, in comparison to PLR, had a higher area under the curve (AUC) of 0.779, with a larger OR of 1.237 and cutoff of 4.1, and showed 69% sensitivity and 78% specificity in predicting severe disease. Cut off for PLR was 115.3, which showed 79% sensitivity and 62% specificity in predicting severe disease. Conclusion NLR and PLR, both showing acceptable AUCs, can be used as screening tools to predict disease severity. However, NLR was a better predictor of disease severity.


2017 ◽  
Vol 56 (6) ◽  
pp. 703-710
Author(s):  
Michaela Lackner ◽  
Günter Rambach ◽  
Emina Jukic ◽  
Bettina Sartori ◽  
Josef Fritz ◽  
...  

Abstract No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitro azole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection.


2020 ◽  
Author(s):  
Vignesh Chidambaram ◽  
Nyan Lynn Tun ◽  
Waqas Haque ◽  
Marie Gilbert Majella ◽  
Ranjith Kumar Sivakumar ◽  
...  

Background: Understanding the factors associated with disease severity and mortality in Coronavirus disease (COVID19) is imperative to effectively triage patients. We performed a systematic review to determine the demographic, clinical, laboratory and radiological factors associated with severity and mortality in COVID-19. Methods: We searched PubMed, Embase and WHO database for English language articles from inception until May 8, 2020. We included Observational studies with direct comparison of clinical characteristics between a) patients who died and those who survived or b) patients with severe disease and those without severe disease. Data extraction and quality assessment were performed by two authors independently. Results: Among 15680 articles from the literature search, 109 articles were included in the analysis. The risk of mortality was higher in patients with increasing age, male gender (RR 1.45; 95%CI 1.23,1.71), dyspnea (RR 2.55; 95%CI 1.88,2.46), diabetes (RR 1.59; 95%CI 1.41,1.78), hypertension (RR 1.90; 95%CI 1.69,2.15). Congestive heart failure (OR 4.76; 95%CI 1.34,16.97), hilar lymphadenopathy (OR 8.34; 95%CI 2.57,27.08), bilateral lung involvement (OR 4.86; 95%CI 3.19,7.39) and reticular pattern (OR 5.54; 95%CI 1.24,24.67) were associated with severe disease. Clinically relevant cut-offs for leukocytosis(>10.0 x109/L), lymphopenia(< 1.1 x109/L), elevated C-reactive protein(>100mg/L), LDH(>250U/L) and D-dimer(>1mg/L) had higher odds of severe disease and greater risk of mortality. Conclusion: Knowledge of the factors associated of disease severity and mortality identified in our study may assist in clinical decision-making and critical-care resource allocation for patients with COVID-19.


2021 ◽  
Author(s):  
Gregory M Miller ◽  
Austin J Ellis ◽  
Rangaprasad Sarangarajan ◽  
Amay Parikh ◽  
Leonardo O Rodrigues ◽  
...  

Objective: The COVID-19 pandemic generated a massive amount of clinical data, which potentially holds yet undiscovered answers related to COVID-19 morbidity, mortality, long term effects, and therapeutic solutions. The objective of this study was to generate insights on COVID-19 mortality-associated factors and identify potential new therapeutic options for COVID-19 patients by employing artificial intelligence analytics on real-world data. Materials and Methods: A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within Interrogative Biology® platform was used for network learning, inference causality and hypothesis generation to analyze 16,277 PCR positive patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated causal networks that enabled unbiased identification of significant predictors of mortality for specific COVID-19 patient populations. These findings were validated by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. Results: We found that in the SARS-CoV-2 PCR positive patient cohort, early use of the antiemetic agent ondansetron was associated with increased survival in mechanically ventilated patients. Conclusions: The results demonstrate how real world COVID-19 focused data analysis using artificial intelligence can generate valid insights that could possibly support clinical decision-making and minimize the future loss of lives and resources.


Biomedicine ◽  
2021 ◽  
Vol 41 (3) ◽  
pp. 1
Author(s):  
Manjula Shantaram

Artificial intelligence (AI) is prepared to become a transformational force in healthcare. From chronic diseases and cancer to radiology and risk assessment, there are nearly endless opportunities to influence technology to install more precise, efficient, and impactful interventions at exactly the right moment in a patient’s care.AI offers a number of benefits over traditional analytics and clinical decision-making techniques.  Learning algorithms can become more specific and accurate as they interact with training data, allowing humans to gain unique insights into diagnostics, care processes, treatment variability, and patient outcomes (1).     Using computers to communicate is not a new idea by any means, but creating direct interfaces between technology and the human mind without the need for keyboards, mice, and monitors is a cutting-edge area of research that has significant applications for some patients. Neurological diseases and trauma to the nervous system can take away some patients’ abilities to speak, move, and interact meaningfully with people and their environments.  Brain-computer interfaces (BCIs) backed by artificial intelligence could restore those fundamental experiences to those who feared them lost forever. Brain-computer interfaces could drastically improve quality of life for patients with ALS, strokes, or locked-in syndrome, as well as the 500,000 people worldwide who experience spinal cord injuries every year (2).   Radiological images obtained by MRI machines, CT scanners, and x-rays offer non-invasive visibility into the inner workings of the human body.  But many diagnostic processes still rely on physical tissue samples obtained through biopsies, which carry risks including the potential for infection. AI will enable the next generation of radiology tools that are accurate and detailed enough to replace the need for tissue samples in some cases, experts predict. Diagnostic imaging team with the surgeon and the pathologist can be brought together which will be a big challenge (3).   Succeeding in the pursuit may allow clinicians to develop a more accurate understanding of how tumours behave as a whole instead of basing treatment decisions on the properties of a small segment of the malignancy. Providers may also be able to better define the aggressiveness of cancers and target treatments more appropriately. Artificial intelligence is helping to enable “virtual biopsies” and advance the innovative field of radiomics, which focuses on harnessing image-based algorithms to characterize the phenotypes and genetic properties of tumours (1).   Shortages of trained healthcare providers, including ultrasound technicians and radiologists can significantly limit access to life-saving care in developing nations around the world. AI could help mitigate the impacts of this severe deficit of qualified clinical staff by taking over some of the diagnostic duties typically allocated to humans (4).   For example, AI imaging tools can screen chest x-rays for signs of tuberculosis, often achieving a level of accuracy comparable to humans.  This capability could be deployed through an app available to providers in low-resource areas, reducing the need for a trained diagnostic radiologist on site.   However, algorithm developers must be careful to account for the fact that different ethnic groups or residents of different regions may have unique physiologies and environmental factors that will influence the presentation of disease.The course of a disease and population affected by the disease may look very different in India than in the US. As these algorithms are being developed,  it is very important to make sure that the data represents a diversity of disease presentations and populations. we cannot just develop an algorithm based on a single population and expect it to work as well on others (1).   Electronic health records (EHRs) have played an instrumental role in the healthcare industry’s journey towards digitalization, but the switch has brought myriad problems associated with cognitive overload, endless documentation, and user burnout. EHR developers are now using AI to create more intuitive interfaces and automate some of the routine processes that consume so much of a user’s time. Users spend the majority of their time on three tasks: clinical documentation, order entry, and sorting through the in-basket (5).   Voice recognition and dictation are helping to improve the clinical documentation process, but natural language processing (NLP) tools might not be going far enough. Video recording a clinical encounter would be helpful while using AI and machine learning to index those videos for future information retrieval. And it would be just like in the home, where we are using Siri and Alexa.  The future will bring virtual assistants to the bedside for clinicians to use with embedded intelligence for order entry(5). AI may also help to process routine requests from the inbox, like


Sign in / Sign up

Export Citation Format

Share Document