scholarly journals Prostaglandin F2 and EP2 Agonists Exert Different Effects on 3D 3T3-L1 Spheroids during Their Culture Phase

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1821
Author(s):  
Yosuke Ida ◽  
Masato Furuhashi ◽  
Megumi Watanabe ◽  
Araya Umetsu ◽  
Fumihito Hikage ◽  
...  

To elucidate the effects of switching a PGF2α agonist, bimatoprost acid (BIM-A), to an EP2 agonist (Omidenepag—OMD; butaprost—Buta) or reversing the switching on adipose tissue, two-dimensional (2D) and three-dimensional (3D) cultures of 3T3-L1 cells were analyzed by lipid staining and according to the mRNA expression of adipogenesis-related genes (Pparγ, Ap2, and Leptin), components of the extracellular matrix (ECM; collagen1 (Col1), Col4, Col6, and fibronectin (Fn)), and the sizes and stiffness of the 3D spheroids. Switching from BIM-A to EP2 agonists caused (1) suppression of lipid staining and downregulation of most adipogenesis-related genes, (2) smaller and stiffer 3D spheroids, and (3) upregulation of Col1 and Fn, downregulation of Col4 (2D), or up-regulation of all ECM genes (3D, BIM-A to OMD), as well as downregulation of Col6 (3D, BIM-A to Buta). In contrast, reversing the switching resulted in (1) an enhancement in lipid staining (2D) and a significant upregulation of adipogenesis-related genes (2D, 3D Buta to BIM-A), (2) larger and slightly stiffer 3D spheroids, and (3) upregulation of Col1 and Fn (2D). These collective findings indicate that the switching orders of BIM-A and EP2 agonists have a significant effect on lipid metabolism, ECM expression, and the physical stiffness of 3T3-L1 cells.

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 35-35
Author(s):  
Maegan A Reeves ◽  
Courtney E Charlton ◽  
Terry D Brandebourg

Abstract Given adipose tissue is histologically classified as connective tissue, we hypothesized expression of extracellular matrix (ECM) components are significantly altered during adipogenesis. However, little is known about the regulation of the ECM during adipose tissue development in the pig. Therefore, the objective of this study was to characterize expression of ECM components during porcine adipogenesis. Primary cultures of adipose tissue stromal-vascular cells were harvested from 3-day-old neonatal pigs (n=6) and preadipocytes induced to differentiate in vitro for 8 days in the presence of insulin, hydrocortisone, and rosiglitazone. Total RNA was extracted from these cultures on days 0 and 8 post-induction. Real-time PCR was then utilized to determine changes in mRNA expression for collagen type I alpha 1 chain (COL1A), collagen type I alpha 2 chain (COL2A), collagen type I alpha 3 chain (COL3A), collagen type I alpha 4 chain (COL4A), collagen type I alpha 6 chain (COL6A), biglycan, fibronectin, laminin, nitogen-1 (NID1), matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), metallopeptidase inhibitor 3 (TIMP3). The mRNA abundances of COL1A, COL3A and MMP2 were significantly downregulated 2.86-fold (P < 0.05), 16.7-fold (P < 0.01) and 3.1-fold (P < 0.05) respectively in day 8 (differentiated) compared to day 0 (undifferentiated) cultures. Meanwhile, mRNA abundances were significantly upregulated during adipogenesis for the COL2A (2.82-fold; P < 0.05), COL4A (2.01-fold; P < 0.05), COL6A (2.8-fold; P < 0.05), biglycan (49.9- fold; P < 0.001), fibronectin (452-fold; P < 0.001), laminin (6.1-fold; P < 0.05), NID1(47.4-fold; P < 0.01), MMP9 (76.8- fold; P < 0.01), and TIMP3(3.04-fold; P < 0.05) genes. These data support the hypothesis that significant changes in ECM components occur during porcine adipogenesis. Modulating adipose tissue ECM remodeling might be a novel strategy to manipulate adiposity in the pig.


Author(s):  
Claudia Consales ◽  
Alessio Butera ◽  
Caterina Merla ◽  
Emanuela Pasquali ◽  
Vanni Lopresto ◽  
...  

AbstractWe here characterize the response to the extremely low-frequency (ELF) magnetic field (MF, 50 Hz, 1 mT) of SH-SY5Y human neuroblastoma cells, cultured in a three-dimensional (3D) Alvetex® scaffold compared to conventional two-dimensional (2D) monolayers. We proved that the growing phenotype of proliferating SH-SY5Y cells is not affected by the culturing conditions, as morphology, cell cycle distribution, proliferation/differentiation gene expression of 3D-cultures overlap what reported in 2D plates. In response to 72-h exposure to 50-Hz MF, we demonstrated that no proliferation change and apoptosis activation occur in both 2D and 3D cultures. Consistently, no modulation of Ki67, MYCN, CCDN1, and Nestin, of invasiveness and neo-angiogenesis-controlling genes (HIF-1α, VEGF, and PDGF) and of microRNA epigenetic signature (miR-21-5p, miR-222-3p and miR-133b) is driven by ELF exposure. Conversely, intracellular glutathione content and SOD1 expression are exclusively impaired in 3D-culture cells in response to the MF, whereas no change of such redox modulators is observed in SH-SY5Y cells if grown on 2D monolayers. Moreover, ELF-MF synergizes with the differentiating agents to stimulate neuroblastoma differentiation into a dopaminergic (DA) phenotype in the 3D-scaffold culture only, as growth arrest and induction of p21, TH, DAT, and GAP43 are reported in ELF-exposed SH-SY5Y cells exclusively if grown on 3D scaffolds. As overall, our findings prove that 3D culture is a more reliable experimental model for studying SH-SY5Y response to ELF-MF if compared to 2D conventional monolayer, and put the bases for promoting 3D systems in future studies addressing the interaction between electromagnetic fields and biological systems.


2020 ◽  
Vol 21 (11) ◽  
pp. 4141 ◽  
Author(s):  
Tarapong Srisongkram ◽  
Natthida Weerapreeyakul ◽  
Kanjana Thumanu

Fourier transform infrared (FTIR) microspectroscopy was used to evaluate the growth of human melanoma cells (SK-MEL-2) in two-dimensional (2D) versus three-dimensional (3D) spheroid culture systems. FTIR microspectroscopy, coupled with multivariate analysis, could be used to monitor the variability of spheroid morphologies prepared from different cell densities. The characteristic shift in absorbance bands of the 2D cells were different from the spectra of cells from 3D spheroids. FTIR microspectroscopy can also be used to monitor cell death similar to fluorescence cell staining in 3D spheroids. A change in the secondary structure of protein was observed in cells from the 3D spheroid versus the 2D culture system. FTIR microspectroscopy can detect specific alterations in the biological components inside the spheroid, which cannot be detected using fluorescence cell death staining. In the cells from 3D spheroids, the respective lipid, DNA, and RNA region content represent specific markers directly proportional to the spheroid size and central area of necrotic cell death, which can be confirmed using unsupervised PCA and hierarchical cluster analysis. FTIR microspectroscopy could be used as an alternative tool for spheroid cell culture discrimination, and validation of the usual biochemical technique.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Naruhiko Sawa ◽  
Hiroki Fujimoto ◽  
Yoshihiko Sawa ◽  
Junro Yamashita

AbstractOsteocytes are terminally differentiated osteoblasts embedded in the bone matrix. Evidence indicates that cells in the mesenchymal lineage possess plasticity. However, whether or not osteocytes have the capacity to dedifferentiate back into osteoblasts is unclear. This study aimed to clarify the dedifferentiation potential of osteocytes. Mouse calvarial osteoblasts were isolated and maintained in normal two-dimensional (2D) or collagen gel three-dimensional (3D) cultures. In 2D cultures, osteoblasts exhibited a typical fibroblast-like shape with high Alpl and minimal Sost, Fgf23, and Dmp1 expression and osteoblasts formed mineralised nodules. When these osteoblasts were transferred into 3D cultures, they showed a stellate shape with diminished cytoplasm and numerous long processes and expression of Alpl decreased while Sost, Fgf23, and Dmp1 were significantly increased. These cells were in cell cycle arrest and showed suppressed mineralisation, indicating that they were osteocytes. When these osteocytes were recovered from 3D cultures and cultured two-dimensionally again, they regained adequate cytoplasm and lost the long processes, resulting in a fibroblast-like shape. These cells showed high Alpl and low Sost, Fgf23, and Dmp1 expression with a high mineralisation capability, indicating that they were osteoblasts. This report shows that osteocytes possess the capacity to dedifferentiate back into mature osteoblasts without gene manipulation.


2009 ◽  
Vol 184 (4) ◽  
pp. 481-490 ◽  
Author(s):  
Andrew D. Doyle ◽  
Francis W. Wang ◽  
Kazue Matsumoto ◽  
Kenneth M. Yamada

Current concepts of cell migration were established in regular two-dimensional (2D) cell culture, but the roles of topography are poorly understood for cells migrating in an oriented 3D fibrillar extracellular matrix (ECM). We use a novel micropatterning technique termed microphotopatterning (μPP) to identify functions for 1D fibrillar patterns in 3D cell migration. In striking contrast to 2D, cell migration in both 1D and 3D is rapid, uniaxial, independent of ECM ligand density, and dependent on myosin II contractility and microtubules (MTs). 1D and 3D migration are also characterized by an anterior MT bundle with a posterior centrosome. We propose that cells migrate rapidly through 3D fibrillar matrices by a 1D migratory mechanism not mimicked by 2D matrices.


2019 ◽  
Author(s):  
Matías Exequiel Rodríguez ◽  
Mariana Rizzi ◽  
Lucas D. Caeiro ◽  
Yamil E. Masip ◽  
Alina Perrone ◽  
...  

AbstractChaga’ disease, caused by the kinetoplastid parasite Trypanosoma cruzi, presents a variety of chronic clinical manifestations whose determinants are still unknown but probably influenced by the host-parasite interplay established during the first stages of the infection, when bloodstream circulating trypomastigotes disseminate to different organs and tissues. After leaving the blood, trypomastigotes must migrate through tissues to invade cells and establish a chronic infection. How this process occurs remains unexplored. Three-dimensional (3D) cultures are physiologically relevant because mimic the microarchitecture of tissues and provide an environment similar to the encountered in natural infections. In this work, we combined the 3D culture technology with host-pathogen interaction, by studying transmigration of trypomastigotes into 3D spheroids. T. cruzi strains with similar infection dynamics in 2D monolayer cultures but with different in vivo behavior (CL Brener, virulent; SylvioX10 no virulent) presented different infection rates in spheroids (CL Brener ∼40%, SylvioX10 <10%). Confocal microscopy images evidenced that trypomastigotes from CL Brener and other highly virulent strains presented a great ability to transmigrate inside 3D spheroids: as soon as 4 hours post infection parasites were found at 50 µm in depth inside the spheroids. CL Brener trypomastigotes were evenly distributed and systematically observed in the space between cells, suggesting a paracellular route of transmigration to deepen into the spheroids. On the other hand, poor virulent strains presented a weak migratory capacity and remained in the external layers of spheroids (<10µm) with a patch-like distribution pattern. The invasiveness -understood as the ability to transmigrate deep into spheroids- was not a transferable feature between strains, neither by soluble or secreted factors nor by co-cultivation of trypomastigotes from invasive and non-invasive strains. We also studied the transmigration of recent T. cruzi isolates from children that were born congenitally infected, which showed a high migrant phenotype while an isolate form an infected mother (that never transmitted the infection to any of her 3 children) was significantly less migratory. Altogether, our results demonstrate that in a 3D microenvironment each strain presents a characteristic migration pattern and distribution of parasites in the spheroids that can be associated to their in vivo behavior. Certainly, the findings presented here could not have been studied with traditional 2D monolayer cultures.Author SummaryTrypanosoma cruzi is the protozoan parasite that causes Chaga’ disease, also known as American trypanosomiasis. Experimental models of the infection evidence that different strains of the parasite present different virulence in the host, which cannot be always reproduced in 2D monolayer cultures. Three dimensional (3D) cultures can be useful models to study complex host-parasite interactions because they mimic in vitro the microarchitecture of tissues and provide an environment similar to the encountered in natural infections. In particular, spheroids are small 3D aggregates of cells that interact with each other and with the extracellular matrix that they secrete resembling the original microenvironment both functionally and structurally. Spheroids have rarely been employed to explore infectious diseases and host-parasite interactions. In this work we studied how bloodstream trypomastigotes transmigrate through 3D spheroids mimicking the picture encountered by parasites in tissues soon after leaving circulation. We showed that the behavior of T. cruzi trypomastigotes in 3D cultures reflects their in vivo virulence: virulent strains transmigrate deeply into spheroids while non-virulent strains remain in the external layers of spheroids. Besides, this work demonstrates the usefulness of 3D cultures as an accurate in vitro model for the study of host-pathogen interactions that could not be addressed with conventional monolayer cultures.


Sign in / Sign up

Export Citation Format

Share Document