scholarly journals Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment

Biomimetics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 46
Author(s):  
Daniele Costa ◽  
Giacomo Palmieri ◽  
Matteo-Claudio Palpacelli ◽  
David Scaradozzi ◽  
Massimo Callegari

Bio-inspired solutions devised for autonomous underwater robots are currently being investigated by researchers worldwide as a way to improve propulsion. Despite efforts to harness the substantial potential payoffs of marine animal locomotion, biological system performance still has far to go. In order to address this very ambitious objective, the authors of this study designed and manufactured a series of ostraciiform swimming robots over the past three years. However, the pursuit of the maximum propulsive efficiency by which to maximize robot autonomy while maintaining acceptable maneuverability ultimately drove us to improve our design and move from ostraciiform to carangiform locomotion. In order to comply with the tail motion required by the aforementioned swimmers, the authors designed a transmission system capable of converting the continuous rotation of a single motor in the travelling wave-shaped undulations of a multijoint serial mechanism. The propulsive performance of the resulting thruster (i.e., the caudal fin), which constitutes the mechanism end effector, was investigated by means of computational fluid dynamics techniques. Finally, in order to compute the resulting motion of the robot, numerical predictions were integrated into a multibody model that also accounted for the mass distribution inside the robotic swimmer and the hydrodynamic forces resulting from the relative motion between its body and the surrounding fluid. Dynamic analysis allowed the performance of the robotic propulsion to be computed while in the cruising condition.

Author(s):  
Dion Savio Antao ◽  
Bakhtier Farouk

An orifice type pulse tube refrigerator (OPTR) was designed, built and operated to provide cryogenic cooling. The OTPR is a travelling wave thermoacoustic refrigerator that operates on a modified reverse Stirling cycle. We consider a system that is comprised of a pressure wave generator (a linear motor), an aftercooler heat-exchanger, a regenerator (comprising of a porous structure for energy separation), a pulse tube (in lieu of a displacer piston as found in Stirling refrigerators) with a cold and a warm heat-exchanger at its two ends, a needle-type orifice valve, an inertance tube and a buffer volume. The experimental characterization is done at various values of mean pressure of helium (∼ 0.35 MPa–2.2 MPa), amplitude of pressure oscillations, frequency of operation and size of orifice opening. A detailed time-dependent axisymmetric computational fluid dynamic (CFD) model of the OPTR is simulated to predict the performance of the OPTR. In the CFD model, the continuity, momentum and energy equations are solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and the three heat-exchangers) in the OPTR. An accurate representation of heat transfer in the porous media is achieved by employing a thermal non-equilibrium model to couple the gas and solid (porous media) energy equations. In the future, a validated computational model can be used for system improvement and optimization.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Alfred von Loebbecke ◽  
Rajat Mittal ◽  
Frank Fish ◽  
Russell Mark

Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer’s propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT scans, respectively, and the stroke kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency for human swimmers varies over a relatively wide range from about 11% to 29%. The efficiency of the cetacean is found to be about 56%, which is significantly higher than the human swimmers. The computed efficiency is found not to correlate with either the slender body theory or with the Strouhal number.


Author(s):  
Cosimo Bianchini ◽  
Riccardo Da Soghe ◽  
Lorenzo Giannini ◽  
Tommaso Fondelli ◽  
Daniele Massini ◽  
...  

Abstract The development of Ultra-High Bypass Ratio (up to 20) engines with the aim of improving the propulsive efficiency, introduces new challenges for the transmission system in terms of heat management and power losses, since the amount of power transferred through the gearbox is greatly increased. In this respect the accurate estimate of losses at the various flow regimes realized during a typical aeroengine mission within a Power Gear Box (PGB) is essential for the correct design and operation of the engine itself. This paper proposes a computational methodology to estimate all fluid-dynamic (load-independent) losses, which become a major source of dissipation at the high rotational speeds typical of aeroengines, developing within an epicyclic PGB. The overall procedure is based on the superposition principle and approaches the three fluid-dynamic losses, namely injection, windage and meshing losses, with different numerical techniques. The simulations of windage effects, which consider the actual PGB geometry including the carrier disk, the lubricant spray-bar and the external casing, are based on steady-state computations. In order to introduce such simplification, a scaling procedure that avoids interference of the stationary and rotating interfaces was implemented following the outcomes of a previous analysis. The computation of meshing losses employs a fully unsteady dynamic mesh approach and considers a portion of the meshing gears only. Both the sun-planet and planet-ring meshing were considered showing that the latter introduces a much lower level of losses. Finally the injection losses are calculated considering the oil jet momentum variation with simplified methods based on 0D modelling. The proposed procedure, based on the superposition principle and applied to a planetary power gear train, is tested against experimental results described in a previous paper focused on a meshing gear pair.


Author(s):  
Eduardo Blanco ◽  
Rau´l Barrio ◽  
Jorge Parrondo ◽  
Jose´ Gonza´lez ◽  
Joaqui´n Ferna´ndez

A study is presented on the numerical computation of the unsteady flow through a single suction and single volute centrifugal pump equipped with three impellers of different outlet diameter. Computations were performed by means of the Fluent code, solving the 3D URANS equations. The study was focused on the effect of varying the impeller-volute radial gap on the flow perturbations associated to the fluid-dynamic blade-tongue interaction. In order to contrast the numerical predictions, an experimental series of tests was conducted for the pump with the bigger impeller, to obtain pressure fluctuation data along the volute front wall. Finally, the results from the numerical simulations were used to compute the radial forces at the blade passing frequency, as a function of flow-rate and blade-tongue radial gap.


2017 ◽  
Vol 47 (1) ◽  
pp. 49-68 ◽  
Author(s):  
Arash Kadivar ◽  
Ebrahim Nemati Lay

Abstract Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD) technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Kai Fan ◽  
Cunlong Zhou

With the help of the auxiliary function method, we solved the improved Boussinesq (IBq) equation with fluid dynamic damping and the modified IBq (IMBq) equation with Stokes damping, and we obtained their three types of travelling wave exact solutions, which is an extension service of the numerical simulation and the existence of a solution. From the waveform diagram of IBq equation with hydrodynamic damping, it can be seen that when the propagation velocity of kink wave changes, the amplitude also changes significantly, and it is also found that the kink isolated waveform is significantly asymmetric due to the increase of damping coefficient v, which may be of some value in explaining some physical phenomena. In addition, the symbolic computing software maple makes our computing work easier.


2013 ◽  
Vol 3 (3) ◽  
Author(s):  
George Pichurov ◽  
Peter Stankov

AbstractA two-node mathematical model of the human thermophysiological system has been integrated into a Computational Fluid Dynamic (CFD) simulation of the airflow in a room. Temperature inputs from the CFD are used by the model to evaluate the dry and latent heat flux from the body surface and output them as boundary conditions. This is an iterative process and convergence is ensured by under-relaxation of the latent heat flux. The model also considers the dry and latent heat resistance of clothing. Numerical predictions of the body heat loss and airflow are compared against physical measurements in a climate chamber. Good agreement was observed when using the low Reynolds number turbulence model. The integrated simulation performs well under wide set of conditions, predicting body core and skin temperature, blood flow, skin wittedness, as well as the transfer of heat and moisture released by the body into the room.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Raúl Barrio ◽  
Eduardo Blanco ◽  
Jorge Parrondo ◽  
José González ◽  
Joaquín Fernández

A study is presented on the fluid-dynamic pulsations and the corresponding dynamic forces generated in a centrifugal pump with single suction and vaneless volute due to blade-volute interaction. Four impellers with different outlet diameters, obtained from progressive cutbacks (trimmings) of the greatest one, were successively considered in the test pump, so that the radial gap between the impeller and the volute ranged from 8.8% to 23.2% of the impeller radius. The study was based on the numerical computation of the unsteady flow through the machine for a number of flow rates by means of the FLUENT code, solving the 3D unsteady Reynolds-averaged Navier–Stokes equations. Additionally, an experimental series of tests was conducted for the pump with one of the impellers, in order to obtain pressure fluctuation data along the volute front wall that allowed contrasting the numerical predictions. The data collected from the numerical computations were used to estimate the dynamic radial forces and torque at the blade-passing frequency, as a function of flow rate and blade-tongue radial gap. As expected, for a given impeller diameter, the dynamic load increases for off-design conditions, especially for the low range of flow rates, whereas the progressive reduction of the impeller-tongue gap brings about corresponding increments in dynamic load. In particular, varying the blade-tongue gap within the limits of this study resulted in multiplying the maximum magnitude of the blade-passing frequency radial force by a factor of about 4 for low flow rates (i.e., below the nominal flow rate) and 3 for high flow rates.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Hyunchul Kim ◽  
Nick Theodore Khalid Colonnese ◽  
I. Y. Shen

This paper is to study how the vibration modes of a cyclic symmetric rotor evolve when it is assembled to a flexible housing via multiple bearing supports. Prior to assembly, the vibration modes of the rotor are classified as “balanced modes” and “unbalanced modes.” Balanced modes are those modes whose natural frequencies and mode shapes remain unchanged after the rotor is assembled to the housing via bearings. Otherwise, the vibration modes are classified as unbalanced modes. By applying fundamental theorems of continuum mechanics, we conclude that balanced modes will present vanishing inertia forces and moments as they vibrate. Since each vibration mode of a cyclic symmetric rotor can be characterized in terms of a phase index (Chang and Wickert, “Response of Modulated Doublet Modes to Travelling Wave Excitation,” J. Sound Vib., 242, pp. 69–83; Chang and Wickert, 2002, “Measurement and Analysis of Modulated Doublet Mode Response in Mock Bladed Disks,” J. Sound Vib., 250, pp. 379–400; Kim and Shen, 2009, “Ground-Based Vibration Response of a Spinning Cyclic Symmetric Rotor With Gyroscopic and Centrifugal Softening Effects,” ASME J. Vibr. Acoust. (in press)), the criterion of vanishing inertia forces and moments implies that the phase index by itself can uniquely determine whether or not a vibration mode is a balanced mode as follows. Let N be the order of cyclic symmetry of the rotor and n be the phase index of a vibration mode. Vanishing inertia forces and moments indicate that a vibration mode will be a balanced mode if n≠1,N−1,N. When n=N, the vibration mode will be balanced if its leading Fourier coefficient vanishes. To validate the mathematical predictions, modal testing was conducted on a disk with four pairs of brackets mounted on an air-bearing spindle and a fluid-dynamic bearing spindle at various spin speeds. Measured Campbell diagrams agree well with the theoretical predictions.


2018 ◽  
Vol 840 ◽  
pp. 154-189 ◽  
Author(s):  
Sung Goon Park ◽  
Hyung Jin Sung

A fish may gain hydrodynamic benefits from being a member of a school. Inspired by fish schools, a two-dimensional simulation was performed for flexible fins propelled in tandem, diagonal, triangular and diamond configurations. The flow-mediated interactions between the flexible fins were analysed by using an immersed boundary method. A transverse heaving motion was prescribed on the leading edge of each fin, and other posterior parts passively adapted to the surrounding fluid as a result of the fluid–flexible-body interaction. The flexible fins were allowed to actively adjust their relative positions in the horizontal direction. The four basic stable configurations are spontaneously formed and self-sustained purely by the vortex–vortex and vortex–body interactions. The hydrodynamic benefits depend greatly on the local positions of the members. For the same heaving motion prescribed on the leading edge, the input power of the following fin in the stable tandem and diagonal configurations is lower by 14 % and 6 %, respectively, than that of the leading fin. The following fin in the diagonal formation can keep pace with the leading fin even for reduced heaving amplitudes because of the help of the leader via their shared fluid environment, where its required input power is reduced by 21 %. The heaving amplitudes of the trailing fins are reduced to optimize the propulsive efficiency, and the average efficiencies in the triangular and diamond configurations increase by up to 14 % and 19 %, respectively, over that of the isolated swimmer. The propulsive efficiencies are enhanced by 22 % for the fins in the second row and by 36 % for the fin in the third row by decreasing the heaving amplitude in the diamond formation.


Sign in / Sign up

Export Citation Format

Share Document